Abstract

The spine provides structure and support to the body, yet how it develops its characteristic morphology as the organism grows is little understood. This is underscored by the commonality of conditions in which the spine curves abnormally such as scoliosis, kyphosis and lordosis. Understanding the origin of such spinal curves has been challenging in part due to the lack of appropriate animal models. Recently, zebrafish have emerged as promising tools with which to understand the origin of spinal curves. Using zebrafish, we demonstrate that the Urotensin II-related peptides (URPs), Urp1 and Urp2, are essential for maintaining spine morphology. Urp1 and Urp2 are 10-amino acid cyclic peptides expressed by neurons lining the central canal of the spinal cord. Upon combined genetic loss of Urp1 and Urp2, adolescent-onset planar curves manifested in the caudal region of the spine. Highly similar curves were caused by mutation of Uts2r3, an URP receptor. Quantitative comparisons revealed that Urotensin-associated curves were distinct from other zebrafish spinal curve mutants in curve position and direction. Last, we found that the Reissner fiber, a proteinaceous thread that sits in the central canal and has been implicated in the control of spine morphology, breaks down prior to curve formation mutants with perturbed cilia motility but was unaffected by loss of Uts2r3. This suggests a Reissner fiber-independent mechanism of curvature in Urotensin-deficient mutants. Overall, our results show that Urp1 and Urp2 control zebrafish spine morphology and establish new animal models of spine deformity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Elizabeth A Bearce

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zoe H Irons

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Johnathan R O'Hara-Smith

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colin J Kuhns

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophie I Fisher

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. William E Crow

    Department of Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2991-3076
  7. Daniel T Grimes

    Department of Biology, University of Oregon, Eugene, United States
    For correspondence
    dtgrimes@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0173-1887

Funding

National Institutes of Health (R00AR70905)

  • Daniel T Grimes

National Institutes of Health (F32AR078002)

  • Elizabeth A Bearce

National Institutes of Health (F31HD105435)

  • Zoe H Irons

National Institutes of Health (R35GM142949)

  • Daniel T Grimes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were undertaken in accordance with research guidelines of the International Association for Assessment and Accreditation of Laboratory Animal Care and approved by the University of Oregon Institutional Animal Care and Use Committee (# AUP-21-45).

Copyright

© 2022, Bearce et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,727
    views
  • 234
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth A Bearce
  2. Zoe H Irons
  3. Johnathan R O'Hara-Smith
  4. Colin J Kuhns
  5. Sophie I Fisher
  6. William E Crow
  7. Daniel T Grimes
(2022)
Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology
eLife 11:e83883.
https://doi.org/10.7554/eLife.83883

Share this article

https://doi.org/10.7554/eLife.83883

Further reading

    1. Developmental Biology
    Bingbing Wu, Chenghong Long ... Chao Liu
    Research Article

    The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility. Further analysis revealed that CCDC113 could bind to CFAP57 and CFAP91, and function as an adaptor protein for the connection of radial spokes, nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) in the sperm axoneme. Moreover, CCDC113 was identified as a structural component of HTCA, collaborating with SUN5 and CENTLEIN to connect sperm head to tail during spermiogenesis. Together, our studies reveal that CCDC113 serve as a critical hub for sperm axoneme and HTCA stabilization in mice, providing insights into the potential pathogenesis of infertility associated with human CCDC113 mutations.

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.