Flexible coding of time or distance in hippocampal cells

  1. Shai Abramson
  2. Benjamin J Kraus
  3. John A White
  4. Michael E Hasselmo
  5. Dori Derdikman  Is a corresponding author
  6. Genela Morris  Is a corresponding author
  1. Technion - Israel Institute of Technology, Israel
  2. Boston University, United States

Abstract

Analysis of neuronal activity in the hippocampus of behaving animals has revealed cells acting as 'Time Cells', which exhibit selective spiking patterns at specific time intervals since a triggering event, and 'Distance Cells', which encode the traversal of specific distances. Other neurons exhibit a combination of these features, alongside place selectivity. This study aims to investigate how the task performed by animals during recording sessions influences the formation of these representations. We analyzed data from a treadmill running study conducted by Kraus et al.1 in which rats were trained to run at different velocities. The rats were recorded in two trial contexts: a 'fixed time' condition, where the animal ran on the treadmill for a predetermined duration before proceeding, and a 'fixed distance' condition, where the animal ran a specific distance on the treadmill. Our findings indicate that the type of experimental condition significantly influenced the encoding of hippocampal cells. Specifically, distance-encoding cells dominated in fixed-distance experiments, whereas time-encoding cells dominated in fixed-time experiments. These results underscore the flexible coding capabilities of the hippocampus, which are shaped by over-representation of salient variables associated with reward conditions.

Data availability

The current manuscript is a re-analysis of data collected for a previously published paper (Kraus, Benjamin J., Robert J. Robinson II, John A. White, Howard Eichenbaum, and Michael E. Hasselmo. "Hippocampal "time cells": time versus path integration." Neuron 78, no. 6 (2013): 1090-1101).Data used in this paper is available as Matlab files on Dryad:Abramson, Shai et al. (2022), Data for Time or distance: predictive coding of Hippocampal cells, Dryad, Dataset, https://doi.org/10.5061/dryad.ngf1vhhxp

The following previously published data sets were used

Article and author information

Author details

  1. Shai Abramson

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin J Kraus

    Center for Memory and Brain, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John A White

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1073-2638
  4. Michael E Hasselmo

    Center for Memory and Brain, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dori Derdikman

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    derdik@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3677-6321
  6. Genela Morris

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    gmorris@sci.haifa.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-8977

Funding

Israel Science Foundation (2183/21)

  • Dori Derdikman

Binational Science Foundation -NIH CRCNS (BSF:2019807 (NIH: 1R01 MH125544-01 ))

  • Dori Derdikman

Prince Center for the Aging Brain

  • Dori Derdikman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Version history

  1. Received: October 4, 2022
  2. Preprint posted: October 24, 2022 (view preprint)
  3. Accepted: October 12, 2023
  4. Accepted Manuscript published: October 16, 2023 (version 1)
  5. Version of Record published: December 11, 2023 (version 2)

Copyright

© 2023, Abramson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,326
    views
  • 263
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shai Abramson
  2. Benjamin J Kraus
  3. John A White
  4. Michael E Hasselmo
  5. Dori Derdikman
  6. Genela Morris
(2023)
Flexible coding of time or distance in hippocampal cells
eLife 12:e83930.
https://doi.org/10.7554/eLife.83930

Share this article

https://doi.org/10.7554/eLife.83930

Further reading

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.