Flexible coding of time or distance in hippocampal cells

  1. Shai Abramson
  2. Benjamin J Kraus
  3. John A White
  4. Michael E Hasselmo
  5. Dori Derdikman  Is a corresponding author
  6. Genela Morris  Is a corresponding author
  1. Technion - Israel Institute of Technology, Israel
  2. Boston University, United States

Abstract

Analysis of neuronal activity in the hippocampus of behaving animals has revealed cells acting as 'Time Cells', which exhibit selective spiking patterns at specific time intervals since a triggering event, and 'Distance Cells', which encode the traversal of specific distances. Other neurons exhibit a combination of these features, alongside place selectivity. This study aims to investigate how the task performed by animals during recording sessions influences the formation of these representations. We analyzed data from a treadmill running study conducted by Kraus et al.1 in which rats were trained to run at different velocities. The rats were recorded in two trial contexts: a 'fixed time' condition, where the animal ran on the treadmill for a predetermined duration before proceeding, and a 'fixed distance' condition, where the animal ran a specific distance on the treadmill. Our findings indicate that the type of experimental condition significantly influenced the encoding of hippocampal cells. Specifically, distance-encoding cells dominated in fixed-distance experiments, whereas time-encoding cells dominated in fixed-time experiments. These results underscore the flexible coding capabilities of the hippocampus, which are shaped by over-representation of salient variables associated with reward conditions.

Data availability

The current manuscript is a re-analysis of data collected for a previously published paper (Kraus, Benjamin J., Robert J. Robinson II, John A. White, Howard Eichenbaum, and Michael E. Hasselmo. "Hippocampal "time cells": time versus path integration." Neuron 78, no. 6 (2013): 1090-1101).Data used in this paper is available as Matlab files on Dryad:Abramson, Shai et al. (2022), Data for Time or distance: predictive coding of Hippocampal cells, Dryad, Dataset, https://doi.org/10.5061/dryad.ngf1vhhxp

The following previously published data sets were used

Article and author information

Author details

  1. Shai Abramson

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin J Kraus

    Center for Memory and Brain, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John A White

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1073-2638
  4. Michael E Hasselmo

    Center for Memory and Brain, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dori Derdikman

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    derdik@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3677-6321
  6. Genela Morris

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    gmorris@sci.haifa.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-8977

Funding

Israel Science Foundation (2183/21)

  • Dori Derdikman

Binational Science Foundation -NIH CRCNS (BSF:2019807 (NIH: 1R01 MH125544-01 ))

  • Dori Derdikman

Prince Center for the Aging Brain

  • Dori Derdikman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Version history

  1. Received: October 4, 2022
  2. Accepted: October 12, 2023
  3. Accepted Manuscript published: October 16, 2023 (version 1)

Copyright

© 2023, Abramson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 872
    Page views
  • 184
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shai Abramson
  2. Benjamin J Kraus
  3. John A White
  4. Michael E Hasselmo
  5. Dori Derdikman
  6. Genela Morris
(2023)
Flexible coding of time or distance in hippocampal cells
eLife 12:e83930.
https://doi.org/10.7554/eLife.83930

Further reading

    1. Neuroscience
    Yang Xu, Tian-liang Cui ... Jin-Hui Wang
    Research Article

    The joint storage and reciprocal retrieval of learnt associated signals are presumably encoded by associative memory cells. In the accumulation and enrichment of memory contents in lifespan, a signal often becomes a core signal associatively shared for other signals. One specific group of associative memory neurons that encode this core signal likely interconnects multiple groups of associative memory neurons that encode these other signals for their joint storage and reciprocal retrieval. We have examined this hypothesis in a mouse model of associative learning by pairing the whisker tactile signal sequentially with the olfactory signal, the gustatory signal, and the tail-heating signal. Mice experienced this associative learning show the whisker fluctuation induced by olfactory, gustatory, and tail-heating signals, or the other way around, that is, memories to multi-modal associated signals featured by their reciprocal retrievals. Barrel cortical neurons in these mice become able to encode olfactory, gustatory, and tail-heating signals alongside the whisker signal. Barrel cortical neurons interconnect piriform, S1-Tr, and gustatory cortical neurons. With the barrel cortex as the hub, the indirect activation occurs among piriform, gustatory, and S1-Tr cortices for the second-order associative memory. These associative memory neurons recruited to encode multi-modal signals in the barrel cortex for associative memory are downregulated by neuroligin-3 knockdown. Thus, associative memory neurons can be recruited as the core cellular substrate to memorize multiple associated signals for the first-order and the second-order of associative memories by neuroligin-3-mediated synapse formation, which constitutes neuronal substrates of cognitive activities in the field of memoriology.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Alan E Murphy, Nurun Fancy, Nathan Skene
    Research Article

    Mathys et al. conducted the first single-nucleus RNA-seq (snRNA-seq) study of Alzheimer’s disease (AD) (Mathys et al., 2019). With bulk RNA-seq, changes in gene expression across cell types can be lost, potentially masking the differentially expressed genes (DEGs) across different cell types. Through the use of single-cell techniques, the authors benefitted from increased resolution with the potential to uncover cell type-specific DEGs in AD for the first time. However, there were limitations in both their data processing and quality control and their differential expression analysis. Here, we correct these issues and use best-practice approaches to snRNA-seq differential expression, resulting in 549 times fewer DEGs at a false discovery rate of 0.05. Thus, this study highlights the impact of quality control and differential analysis methods on the discovery of disease-associated genes and aims to refocus the AD research field away from spuriously identified genes.