Sensory experience controls dendritic structure and behavior by distinct pathways involving degenerins
Abstract
Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file. Strains, plasmids and other reagents are available upon request .
Article and author information
Author details
Funding
Israel Science Foundation (442/12)
- Benjamin Podbilewicz
Israel Science Foundation (257/17)
- Benjamin Podbilewicz
Adelis Fund (2023479)
- Benjamin Podbilewicz
Ministry of Science and Technology, Israel (3-13022)
- Benjamin Podbilewicz
MCIN /AEI /10.13039/501100011033 / FEDER, UE (PID2021-123812OB-I00)
- Michael Krieg
MCIN /AEI /10.13039/501100011033 / FEDER, UE (CNS2022-135906)
- Michael Krieg
Human Frontier Science Program (RGP021/2023)
- Michael Krieg
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2025, Inberg et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 933
- views
-
- 132
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.