Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI

  1. Miriam Menzel  Is a corresponding author
  2. David Gräßel
  3. Ivan Rajkovic
  4. Michael M Zeineh
  5. Marios Georgiadis  Is a corresponding author
  1. Delft University of Technology, Netherlands
  2. Forschungszentrum Jülich, Germany
  3. SLAC National Accelerator Laboratory, United States
  4. Stanford Medicine, United States

Abstract

Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity. Scattered light imaging (SLI) and small-angle X-ray scattering (SAXS) reveal axonal orientations with microscopic resolution and high specificity, respectively. Here, we apply both scattering techniques on the same samples and cross-validate them, laying the groundwork for ground-truth axonal orientation imaging and validating dMRI. We evaluate brain regions that include unidirectional and crossing fibers in human and vervet monkey brain sections. SLI and SAXS quantitatively agree regarding in-plane fiber orientations including crossings, while dMRI agrees in the majority of voxels with small discrepancies. We further use SAXS and dMRI to confirm theoretical predictions regarding SLI determination of through-plane fiber orientations. Scattered light and X-ray imaging can provide quantitative micrometer 3D fiber orientations with high resolution and specificity, facilitating detailed investigations of complex fiber architecture in the animal and human brain.

Data availability

All data generated and analyzed in this study are included in the manuscript and supporting figures. The corresponding high-resolution images and parameter maps have been deposited in Zenodo under DOI:10.5281/zenodo.7208998.

The following data sets were generated

Article and author information

Author details

  1. Miriam Menzel

    Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
    For correspondence
    m.menzel@tudelft.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6042-7490
  2. David Gräßel

    Institute of Neuroscience and Medicine INM-1, Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3228-8048
  3. Ivan Rajkovic

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael M Zeineh

    Department of Radiology, Stanford Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marios Georgiadis

    Department of Radiology, Stanford Medicine, Stanford, United States
    For correspondence
    mariosg@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Helmholtz Association (Supercomputing and Modeling for the Human Brain)

  • Miriam Menzel

Helmholtz Association (Helmholtz Doctoral Prize 2019)

  • Miriam Menzel

Horizon 2020 Framework Programme (Human Brain Project SGA3,945539)

  • Miriam Menzel
  • David Gräßel

Klaus Tschira Stiftung (Klaus Tschira Boost Fund)

  • Miriam Menzel

National Institutes of Health (R01AG061120-01)

  • Michael M Zeineh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The vervet monkey brain tissue was obtained in accordance with the Wake Forest Institutional Animal Care and Use Committee (IACUC #A11-219). Euthanasia procedures conformed to the AVMA Guidelines for the Euthanasia of Animals. All animal procedures were in accordance with the National Institutes of Health guidelines for the use and care of laboratory animals and in compliance with the ARRIVE guidelines.

Human subjects: The human brain tissue was obtained from the Stanford ADRC Biobank, which follows procedures of the Stanford Medicine IRB-approved protocol #33727, including a written informed brain donation consent of the subject or their next of kin or legal representative.

Copyright

© 2023, Menzel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,050
    views
  • 188
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miriam Menzel
  2. David Gräßel
  3. Ivan Rajkovic
  4. Michael M Zeineh
  5. Marios Georgiadis
(2023)
Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI
eLife 12:e84024.
https://doi.org/10.7554/eLife.84024

Share this article

https://doi.org/10.7554/eLife.84024

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Neuroscience
    Yiheng Zhang, Yun Chen ... He Cui
    Research Article

    Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.