Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI

  1. Miriam Menzel  Is a corresponding author
  2. David Gräßel
  3. Ivan Rajkovic
  4. Michael M Zeineh
  5. Marios Georgiadis  Is a corresponding author
  1. Delft University of Technology, Netherlands
  2. Forschungszentrum Jülich, Germany
  3. SLAC National Accelerator Laboratory, United States
  4. Stanford Medicine, United States

Abstract

Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity. Scattered light imaging (SLI) and small-angle X-ray scattering (SAXS) reveal axonal orientations with microscopic resolution and high specificity, respectively. Here, we apply both scattering techniques on the same samples and cross-validate them, laying the groundwork for ground-truth axonal orientation imaging and validating dMRI. We evaluate brain regions that include unidirectional and crossing fibers in human and vervet monkey brain sections. SLI and SAXS quantitatively agree regarding in-plane fiber orientations including crossings, while dMRI agrees in the majority of voxels with small discrepancies. We further use SAXS and dMRI to confirm theoretical predictions regarding SLI determination of through-plane fiber orientations. Scattered light and X-ray imaging can provide quantitative micrometer 3D fiber orientations with high resolution and specificity, facilitating detailed investigations of complex fiber architecture in the animal and human brain.

Data availability

All data generated and analyzed in this study are included in the manuscript and supporting figures. The corresponding high-resolution images and parameter maps have been deposited in Zenodo under DOI:10.5281/zenodo.7208998.

The following data sets were generated

Article and author information

Author details

  1. Miriam Menzel

    Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
    For correspondence
    m.menzel@tudelft.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6042-7490
  2. David Gräßel

    Institute of Neuroscience and Medicine INM-1, Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3228-8048
  3. Ivan Rajkovic

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael M Zeineh

    Department of Radiology, Stanford Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marios Georgiadis

    Department of Radiology, Stanford Medicine, Stanford, United States
    For correspondence
    mariosg@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Helmholtz Association (Supercomputing and Modeling for the Human Brain)

  • Miriam Menzel

Helmholtz Association (Helmholtz Doctoral Prize 2019)

  • Miriam Menzel

Horizon 2020 Framework Programme (Human Brain Project SGA3,945539)

  • Miriam Menzel
  • David Gräßel

Klaus Tschira Stiftung (Klaus Tschira Boost Fund)

  • Miriam Menzel

National Institutes of Health (R01AG061120-01)

  • Michael M Zeineh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The vervet monkey brain tissue was obtained in accordance with the Wake Forest Institutional Animal Care and Use Committee (IACUC #A11-219). Euthanasia procedures conformed to the AVMA Guidelines for the Euthanasia of Animals. All animal procedures were in accordance with the National Institutes of Health guidelines for the use and care of laboratory animals and in compliance with the ARRIVE guidelines.

Human subjects: The human brain tissue was obtained from the Stanford ADRC Biobank, which follows procedures of the Stanford Medicine IRB-approved protocol #33727, including a written informed brain donation consent of the subject or their next of kin or legal representative.

Reviewing Editor

  1. Amy FD Howard, University of Oxford, United Kingdom

Version history

  1. Preprint posted: October 4, 2022 (view preprint)
  2. Received: October 7, 2022
  3. Accepted: May 2, 2023
  4. Accepted Manuscript published: May 11, 2023 (version 1)
  5. Version of Record published: June 6, 2023 (version 2)

Copyright

© 2023, Menzel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 790
    Page views
  • 146
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miriam Menzel
  2. David Gräßel
  3. Ivan Rajkovic
  4. Michael M Zeineh
  5. Marios Georgiadis
(2023)
Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI
eLife 12:e84024.
https://doi.org/10.7554/eLife.84024

Share this article

https://doi.org/10.7554/eLife.84024

Further reading

    1. Neuroscience
    Peibo Xu, Jian Peng ... Yuejun Chen
    Research Article

    Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.

    1. Neuroscience
    Maureen van der Grinten, Jaap de Ruyter van Steveninck ... Yağmur Güçlütürk
    Tools and Resources

    Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or ‘phosphenes’) has limited resolution, and a great portion of the field’s research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator’s suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.