Smoking, Alcohol consumption, and 24 Gastrointestinal Diseases: Mendelian Randomization Analysis

  1. Shuai Yuan
  2. Jie Chen
  3. Xixian Ruan
  4. Yuhao Sun
  5. Ke Zhang
  6. Xiaoyan Wang  Is a corresponding author
  7. Xue Li  Is a corresponding author
  8. Dipender Gill
  9. Stephen Burgess
  10. Edward Giovannucci
  11. Susanna C Larsson
  1. Karolinska Institute, Sweden
  2. Second Affiliated Hospital of Zhejiang University, China
  3. Central South University, China
  4. Westlake University, China
  5. Zhejiang University, China
  6. Imperial College London, United Kingdom
  7. University of Cambridge, United Kingdom
  8. Harvard TH Chan School of Public Health, United States

Abstract

Background: Whether the positive associations of smoking and alcohol consumption with gastrointestinal diseases are causal is uncertain. We conducted this Mendelian randomization (MR) to comprehensively examine associations of smoking and alcohol consumption with common gastrointestinal diseases.

Methods: Genetic variants associated with smoking initiation and alcohol consumption at the genome-wide significance level were selected as instrumental variables. Genetic associations with 24 gastrointestinal diseases were obtained from the UK Biobank, FinnGen study, and other large consortia. Univariable and multivariable MR analyses were conducted to estimate the overall and independent MR associations after mutual adjustment for genetic liability to smoking and alcohol consumption.

Results: Genetic predisposition to smoking initiation was associated with increased risk of 20 of 24 gastrointestinal diseases, including 7 upper gastrointestinal diseases (gastroesophageal reflux, esophageal cancer, gastric ulcer, duodenal ulcer, acute gastritis, chronic gastritis and gastric cancer), 4 lower gastrointestinal diseases (irritable bowel syndrome, diverticular disease, Crohn's disease and ulcerative colitis), 8 hepatobiliary and pancreatic diseases (non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis, liver cancer, cholecystitis, cholelithiasis, acute and chronic pancreatitis), and acute appendicitis. Fifteen out of 21 associations persisted after adjusting for genetically-predicted alcohol consumption. Genetically-predicted higher alcohol consumption was associated with increased risk of duodenal cancer, alcoholic liver disease, cirrhosis, and chronic pancreatitis; however, the association for duodenal ulcer did not remain after adjustment for genetic predisposition to smoking initiation.

Conclusion: This study provides MR evidence supporting causal associations of smoking with a broad range of gastrointestinal diseases, whereas alcohol consumption was associated with only a few gastrointestinal diseases.

Funding: The Natural Science Fund for Distinguished Young Scholars of Zhejiang Province; National Natural Science Foundation of China; Key Project of Research and Development Plan of Hunan Province; the Swedish Heart Lung Foundation; the Swedish Research Council; the Swedish Cancer Society.

Data availability

Data analyzed in the current study are publicly available GWAS summary-level data. The specific information and link could be found in Table S1. The code and curated data for the current analysis are available at https://github.com/XixianRuan/smoking_gi.

The following previously published data sets were used

Article and author information

Author details

  1. Shuai Yuan

    Institute of Environmental Medicine, Karolinska Institute, Solna, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Jie Chen

    Second Affiliated Hospital of Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4029-4192
  3. Xixian Ruan

    Department of Gastroenterology, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4937-9168
  4. Yuhao Sun

    Second Affiliated Hospital of Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ke Zhang

    Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoyan Wang

    Department of Gastroenterology, Central South University, Changsha, China
    For correspondence
    wangxiaoyan@csu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7281-1078
  7. Xue Li

    Usher Institute, Zhejiang University, Hangzhou, China
    For correspondence
    xue.li@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6880-2577
  8. Dipender Gill

    Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Stephen Burgess

    MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5365-8760
  10. Edward Giovannucci

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Susanna C Larsson

    Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (81970494)

  • Xiaoyan Wang

Key Project of Research and Development Plan of Hunan Province (2019SK2041)

  • Xiaoyan Wang

Hjärt-Lungfonden (20210351)

  • Susanna C Larsson

Vetenskapsrådet (2019-00977)

  • Susanna C Larsson

Cancerfonden

  • Susanna C Larsson

Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001)

  • Xue Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Included studies had been approved by corresponding institutional review boards and ethical committees, and consent forms had been signed by all participants.

Copyright

© 2023, Yuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,056
    views
  • 820
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuai Yuan
  2. Jie Chen
  3. Xixian Ruan
  4. Yuhao Sun
  5. Ke Zhang
  6. Xiaoyan Wang
  7. Xue Li
  8. Dipender Gill
  9. Stephen Burgess
  10. Edward Giovannucci
  11. Susanna C Larsson
(2023)
Smoking, Alcohol consumption, and 24 Gastrointestinal Diseases: Mendelian Randomization Analysis
eLife 12:e84051.
https://doi.org/10.7554/eLife.84051

Share this article

https://doi.org/10.7554/eLife.84051

Further reading

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Renan Maestri, Benoît Perez-Lamarque ... Hélène Morlon
    Research Article

    Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus–host codiversification have been largely over-estimated.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Chelsea L Hansen, Cécile Viboud, Lone Simonsen
    Research Article

    Cancer is considered a risk factor for COVID-19 mortality, yet several countries have reported that deaths with a primary code of cancer remained within historic levels during the COVID-19 pandemic. Here, we further elucidate the relationship between cancer mortality and COVID-19 on a population level in the US. We compared pandemic-related mortality patterns from underlying and multiple cause (MC) death data for six types of cancer, diabetes, and Alzheimer’s. Any pandemic-related changes in coding practices should be eliminated by study of MC data. Nationally in 2020, MC cancer mortality rose by only 3% over a pre-pandemic baseline, corresponding to ~13,600 excess deaths. Mortality elevation was measurably higher for less deadly cancers (breast, colorectal, and hematological, 2–7%) than cancers with a poor survival rate (lung and pancreatic, 0–1%). In comparison, there was substantial elevation in MC deaths from diabetes (37%) and Alzheimer’s (19%). To understand these differences, we simulated the expected excess mortality for each condition using COVID-19 attack rates, life expectancy, population size, and mean age of individuals living with each condition. We find that the observed mortality differences are primarily explained by differences in life expectancy, with the risk of death from deadly cancers outcompeting the risk of death from COVID-19.