BUB-1 and CENP-C recruit PLK-1 to control chromosome alignment and segregation during meiosis I in C. elegans oocytes

  1. Samuel JP Taylor
  2. Laura Bel Borja
  3. Flavie Soubigou
  4. Jack Houston
  5. Dhanya K Cheerambathur
  6. Federico Pelisch  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. Ludwig Institute for Cancer Research, United States
  3. University of Edinburgh, United Kingdom

Abstract

Phosphorylation is a key post-translational modification that is utilised in many biological processes for the rapid and reversible regulation of protein localisation and activity. Polo-like kinase 1 (PLK-1) is essential for both mitotic and meiotic cell divisions, with key functions being conserved in eukaryotes. The roles and regulation of PLK-1 during mitosis have been well characterised. However, the discrete roles and regulation of PLK-1 during meiosis have remained obscure. Here, we used Caenorhabditis elegans (C. elegans) oocytes to show that PLK-1 plays distinct roles in meiotic spindle assembly and/or stability, chromosome alignment and segregation, and polar body extrusion during meiosis I. Furthermore, by a combination of live imaging and biochemical analysis we identified the chromosomal recruitment mechanisms of PLK-1 during C. elegans oocyte meiosis. The spindle assembly checkpoint kinase BUB-1 directly recruits PLK-1 to the kinetochore and midbivalent while the chromosome arm population of PLK-1 depends on a direct interaction with the centromeric-associated protein CENP-CHCP-4. We found that perturbing both BUB-1 and CENP-CHCP-4 recruitment of PLK-1 leads to severe meiotic defects, resulting in highly aneuploid oocytes. Overall, our results shed light on the roles played by PLK-1 during oocyte meiosis and provide a mechanistic understanding of PLK-1 targeting to meiotic chromosomes.

Data availability

A supporting file containing all the information for the graphs presented in the manuscript has been added.

Article and author information

Author details

  1. Samuel JP Taylor

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0654-619X
  2. Laura Bel Borja

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8381-934X
  3. Flavie Soubigou

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    No competing interests declared.
  4. Jack Houston

    Ludwig Institute for Cancer Research, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Dhanya K Cheerambathur

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  6. Federico Pelisch

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    f.pelisch@dundee.ac.uk
    Competing interests
    Federico Pelisch, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4575-1492

Funding

Medical Research Council (MR/R008574/1)

  • Laura Bel Borja
  • Flavie Soubigou
  • Federico Pelisch

Wellcome Trust (208833)

  • Dhanya K Cheerambathur

National Science Foundation (1650112)

  • Jack Houston

National Institutes of Health (GM074215)

  • Jack Houston

Wellcome Trust (105606/Z/14/Z)

  • Federico Pelisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jon Pines, Institute of Cancer Research Research, United Kingdom

Version history

  1. Preprint posted: October 7, 2022 (view preprint)
  2. Received: October 9, 2022
  3. Accepted: April 14, 2023
  4. Accepted Manuscript published: April 17, 2023 (version 1)
  5. Version of Record published: May 3, 2023 (version 2)

Copyright

© 2023, Taylor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 891
    views
  • 179
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel JP Taylor
  2. Laura Bel Borja
  3. Flavie Soubigou
  4. Jack Houston
  5. Dhanya K Cheerambathur
  6. Federico Pelisch
(2023)
BUB-1 and CENP-C recruit PLK-1 to control chromosome alignment and segregation during meiosis I in C. elegans oocytes
eLife 12:e84057.
https://doi.org/10.7554/eLife.84057

Share this article

https://doi.org/10.7554/eLife.84057

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.