Allele-specific gene editing approach for vision loss restoration in RHO-associated Retinitis Pigmentosa

  1. Xiaozhen Liu
  2. Jing Qiao
  3. Ruixuan Jia
  4. Fan Zhang
  5. Xiang Meng
  6. Yang Li
  7. Liping Yang  Is a corresponding author
  1. Peking University Third Hospital, China
  2. Beijing Chinagene Co, Ltd, China
  3. Capital Medical University, China

Abstract

Mutant RHO is the most frequent genetic cause of autosomal dominant retinitis pigmentosa. Here, we developed an allele-specific gene editing therapeutic drug to selectively target the human T17M RHO mutant allele while leaving the wild-type RHO allele intact for the first time. We identified a Staphylococcus aureus Cas9 (SaCas9) guide RNA that was highly active and specific to the human T17M RHO allele. In vitro experiments using HEK293T cells and patient-specific induced pluripotent stem cells (iPSCs) demonstrated active nuclease activity and high specificity. Subretinal delivery of a single adeno-associated virus serotype 2/8 packaging SaCas9 and sgRNA to the retinas of the RHO humanized mice showed that this therapeutic drug targeted the mutant allele selectively, thereby downregulating the mutant RHO mRNA expression. Administration of this therapeutic drug resulted in a long-term (up to 11 months after treatment) improvement of retinal function and preservation of photoreceptors in the mutant humanized heterozygous mice. Our study demonstrated a dose-dependent therapeutic effect in vivo. Unwanted off-target effects were not observed at the whole-genome sequencing level. Our study provides strong support for the further development of this effective therapeutic drug to treat RHO-T17M associated autosomal dominant retinitis pigmentosa (adRP), also offers a generalizable framework for developing gene editing medicine. Furthermore, our success in restoring the vision loss in the suffering RHO humanized mice verifies the feasibility of allele-specific CRISPR/Cas9-based medicines for other autosomal dominant inherited retinal dystrophies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided in Source Data 1, 2 and 3.

Article and author information

Author details

  1. Xiaozhen Liu

    Department of Ophthalmology, Peking University Third Hospital, Beijing, China
    Competing interests
    No competing interests declared.
  2. Jing Qiao

    Beijing Chinagene Co, Ltd, Beijing, China
    Competing interests
    Jing Qiao, is an employee of Beijing Chinagene Co.,LTD and was employeed by Beijing Chinagene Co.,LTD at the time this work was conducted. The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
  3. Ruixuan Jia

    Department of Ophthalmology, Peking University Third Hospital, Beijing, China
    Competing interests
    No competing interests declared.
  4. Fan Zhang

    Beijing Chinagene Co, Ltd, Beijing, China
    Competing interests
    Fan Zhang, is an employee of Beijing Chinagene Co.,LTD and was employeed by Beijing Chinagene Co.,LTD at the time this work was conducted. The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed..
  5. Xiang Meng

    Department of Ophthalmology, Peking University Third Hospital, Beijing, China
    Competing interests
    No competing interests declared.
  6. Yang Li

    Beijing Tongren Eye Center, Capital Medical University, Beijing, China
    Competing interests
    No competing interests declared.
  7. Liping Yang

    Department of Ophthalmology, Peking University Third Hospital, Beijing, China
    For correspondence
    alexlipingyang@bjmu.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4239-228X

Funding

the National Natural Science Foundation of China (81770966)

  • Liping Yang

the Beijing Natural Science Foundation of China (19JCZDJC64000(Z))

  • Liping Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Approval was obtained from the Peking University Health Science Center Ethics Committee for Experimental Animal Research (Research License LA20200473). All procedures were performed according to the regulations of the Association for Research in Vision and Ophthalmology's statement for the use of animals in ophthalmic and vision research. All mice were maintained in accordance with the guidelines of the Association for the Assessment and Accreditation of Laboratory Animal Care.Four adult, female NHP were bred and maintained at JOINN Laboratories (Suzhou, China), approval was obtained from the JOINN Laboratories Ethics Committee for Experimental Animal Research (Research License ACU21-1108).

Human subjects: The study was approved by the Medical Scientific Research Ethics Committee of Peking University Third Hospital (Research License 2021262). The procedures were performed in accordance with the tenets set forth in the Declaration of Helsinki. All patients provided written informed consent for this study.

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,499
    views
  • 338
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaozhen Liu
  2. Jing Qiao
  3. Ruixuan Jia
  4. Fan Zhang
  5. Xiang Meng
  6. Yang Li
  7. Liping Yang
(2023)
Allele-specific gene editing approach for vision loss restoration in RHO-associated Retinitis Pigmentosa
eLife 12:e84065.
https://doi.org/10.7554/eLife.84065

Share this article

https://doi.org/10.7554/eLife.84065

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

    1. Genetics and Genomics
    Xiuling Cao, Xiang Wu ... Beidong Liu
    Research Article

    Due to proteostasis stress induced by aging or disease, misfolded proteins can form toxic intermediate species of aggregates and eventually mature into less toxic inclusion bodies (IBs). Here, using a yeast imaging-based screen, we identified 84 potential synphilin-1 (SY1) IB regulators and isolated the conserved sphingolipid metabolic components in the most enriched groups. Furthermore, we show that, in both yeast cells and mammalian cells, SY1 IBs are associated with mitochondria. Pharmacological inhibition of the sphingolipid metabolism pathway or knockout of its key genes results in a delayed IB maturation and increased SY1 cytotoxicity. We postulate that SY1 IB matures by association with the mitochondrion membrane, and that sphingolipids stimulate the maturation via their membrane-modulating function and thereby protecting cells from SY1 cytotoxicity. Our findings identify a conserved cellular component essential for IB maturation and suggest a mechanism by which cells may detoxify the pathogenic protein aggregates through forming mitochondrion-associated IBs.