Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart

  1. Brett C Baggett
  2. Kevin R Murphy
  3. Elif Sengun
  4. Eric Mi
  5. Yueming Cao
  6. Nilufer N Turan
  7. Yichun Lu
  8. Lorraine Scofield
  9. Tae Yun Kim
  10. Anatoli Y Kabakov
  11. Peter Bronk
  12. Zhilin Qu
  13. Patrizia Camelliti
  14. Patrycja Dubielecka
  15. Dmitry Terentyev
  16. Federica del Monte
  17. Bum-Rak Choi
  18. John Sedivy
  19. Gideon Koren  Is a corresponding author
  1. Brown University, United States
  2. Rhode Island Hospital, United States
  3. University of California, Los Angeles, United States
  4. University of Surrey, United Kingdom
  5. Medical University of South Carolina, United States

Abstract

Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in larger animals, and the mechanisms are unknown. Specifically, age-associated changes in timecourse of senescence and related changes in inflammation and fibrosis are not well understood. Additionally, the cellular and systemic role of senescence and its inflammatory milieu in influencing arrhythmogenesis with age is not clear, particularly in large animal models with cardiac electrophysiology more similar to humans than previously studied animal models. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a twelve-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that therapeutic interventions targeting senescent cells may mitigate arrhythmias post-MI with age.

Data availability

All data generated or analyzed during this study are included in the provided Source Data file.

Article and author information

Author details

  1. Brett C Baggett

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kevin R Murphy

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elif Sengun

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Mi

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yueming Cao

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nilufer N Turan

    Cardiovascular Research Center, Rhode Island Hospital, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yichun Lu

    Cardiovascular Research Center, Rhode Island Hospital, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lorraine Scofield

    Cardiovascular Research Center, Rhode Island Hospital, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Tae Yun Kim

    Cardiovascular Research Center, Rhode Island Hospital, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anatoli Y Kabakov

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Bronk

    Cardiovascular Research Center, Rhode Island Hospital, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9067-2016
  12. Zhilin Qu

    School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Patrizia Camelliti

    School of Biosciences and Medicine, University of Surrey, Surrey, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Patrycja Dubielecka

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3987-0647
  15. Dmitry Terentyev

    Cardiovascular Research Center, Rhode Island Hospital, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Federica del Monte

    Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Bum-Rak Choi

    Cardiovascular Research Center, Rhode Island Hospital, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. John Sedivy

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Gideon Koren

    Brown University, Providence, United States
    For correspondence
    gideon_koren@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6211-5837

Funding

NHLBI Division of Intramural Research (R01HL139467)

  • John Sedivy
  • Gideon Koren

NHLBI Division of Intramural Research (1R1AG049608-01)

  • John Sedivy
  • Gideon Koren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This investigation conformed with the current Guide for Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publication, Revised 2011) as well as the standards recently delineated by the American Physiological Society ("Guiding Principles for Research Involving Animals and Human Beings") and was approved by the Institutional Animal Care and Use Committee of Rhode Island Hospital (Permits numbers 5001-21 and 5040-22).

Copyright

© 2023, Baggett et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 681
    views
  • 134
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brett C Baggett
  2. Kevin R Murphy
  3. Elif Sengun
  4. Eric Mi
  5. Yueming Cao
  6. Nilufer N Turan
  7. Yichun Lu
  8. Lorraine Scofield
  9. Tae Yun Kim
  10. Anatoli Y Kabakov
  11. Peter Bronk
  12. Zhilin Qu
  13. Patrizia Camelliti
  14. Patrycja Dubielecka
  15. Dmitry Terentyev
  16. Federica del Monte
  17. Bum-Rak Choi
  18. John Sedivy
  19. Gideon Koren
(2023)
Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart
eLife 12:e84088.
https://doi.org/10.7554/eLife.84088

Share this article

https://doi.org/10.7554/eLife.84088

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.