Tissue libraries enable rapid determination of conditions that preserve antibody labeling in cleared mouse and human tissue

  1. Theodore J Zwang  Is a corresponding author
  2. Rachel E Bennett
  3. Maria Lysandrou
  4. Benjamin Woost
  5. Anqi Zhang
  6. Charles M Lieber
  7. Douglas S Richardson
  8. Bradley T Hyman
  1. Massachusetts General Hospital, United States
  2. Stanford University, United States
  3. Harvard University, United States

Abstract

Difficulty achieving complete, specific, and homogenous staining is a major bottleneck preventing the widespread use of tissue clearing techniques to image large volumes of human tissue. In this manuscript, we describe a procedure to rapidly design immunostaining protocols for antibody labeling of cleared brain tissue. We prepared libraries of .5-1.0 mm thick tissue sections that are fixed, pre-treated, and cleared via similar, but different procedures to optimize staining conditions for a panel of antibodies. Results from a library of mouse tissue correlate well with results from a similarly prepared library of human brain tissue, suggesting mouse tissue is an adequate substitute for protocol optimization. These data show that procedural differences do not influence every antibody-antigen pair in the same way, and minor changes can have deleterious effects, therefore, optimization should be conducted for each target. The approach outlined here will help guide researchers to successfully label a variety of targets, thus removing a major hurdle to accessing the rich 3D information available in large, cleared human tissue volumes.

Data availability

All data used in publication can be accessed at the BioImage Archive https://www.ebi.ac.uk/biostudies/studies/S-BIAD479All Matlab code and ImageJ macros used to quantify data can be accessed at https://github.com/tjzwang/IHC

The following data sets were generated

Article and author information

Author details

  1. Theodore J Zwang

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    For correspondence
    tzwang@mgh.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6815-4482
  2. Rachel E Bennett

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Maria Lysandrou

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Benjamin Woost

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Anqi Zhang

    Department of Chemical Engineering, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6121-8095
  6. Charles M Lieber

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. Douglas S Richardson

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3189-2190
  8. Bradley T Hyman

    Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    Bradley T Hyman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7959-9401

Funding

National Institute on Aging (NIA-K99AG068602)

  • Theodore J Zwang

Massachusetts General Hospital (Harrison Gardner,Jr Innovation Award)

  • Theodore J Zwang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the mice were handled according to approved institutional animal care and use committee (IACUC protocol # 2019N000026 and 2020N000069).

Human subjects: Autopsy tissue from human brains were collected at Massachusetts General hospital, with informed consent of patients or their relatives and approval of local institutional review boards. Human tissue was provided by the Massachusetts Alzheimer's Disease Research Center (ADRC) with approval from the Mass General Brigham IRB (1999P009556).

Copyright

© 2023, Zwang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,602
    views
  • 243
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Theodore J Zwang
  2. Rachel E Bennett
  3. Maria Lysandrou
  4. Benjamin Woost
  5. Anqi Zhang
  6. Charles M Lieber
  7. Douglas S Richardson
  8. Bradley T Hyman
(2023)
Tissue libraries enable rapid determination of conditions that preserve antibody labeling in cleared mouse and human tissue
eLife 12:e84112.
https://doi.org/10.7554/eLife.84112

Share this article

https://doi.org/10.7554/eLife.84112

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.