Conformational and oligomeric states of SPOP from small-angle X-ray scattering and molecular dynamics simulations

  1. F Emil Thomasen
  2. Matthew J Cuneo
  3. Tanja Mittag
  4. Kresten Lindorff-Larsen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. St. Jude Children's Research Hospital, United States

Abstract

Speckle-type POZ protein (SPOP) is a substrate adaptor in the ubiquitin proteasome system, and plays important roles in cell-cycle control, development, and cancer. SPOP forms linear higher-order oligomers following an isodesmic self-association model. Oligomerization is essential for SPOP's multivalent interactions with substrates, which facilitate phase separation and localization to biomolecular condensates. Structural characterization of SPOP in its oligomeric state and in solution is, however, challenging due to the inherent conformational and compositional heterogeneity of the oligomeric species. Here, we develop an approach to simultaneously and self-consistently characterize the conformational ensemble and the distribution of oligomeric states of SPOP by combining small-angle X-ray scattering (SAXS) and molecular dynamics simulations. We build initial conformational ensembles of SPOP oligomers using coarse-grained molecular dynamics simulations, and use a Bayesian/maximum entropy approach to refine the ensembles, along with the distribution of oligomeric states, against a concentration series of SAXS experiments. Our results suggest that SPOP oligomers behave as rigid, helical structures in solution, and that a flexible linker region allows SPOP's substrate binding domains to extend away from the core of the oligomers. Additionally, our results are in good agreement with previous characterization of the isodesmic self-association of SPOP. In the future, the approach presented here can be extended to other systems to simultaneously characterize structural heterogeneity and self-assembly.

Data availability

Code and data is available at https://github.com/KULL-Centre/_2022_Thomasen_SPOP. Simulation data is available at https://doi.org/10.17894/ucph.ef999f72-b5e8-45c4-835f-3e49619a0f91. Plasmids are available from Addgene (plasmid IDs 194115 and 194116).

The following data sets were generated

Article and author information

Author details

  1. F Emil Thomasen

    Department of Biology, University of Copenhagen, Copenhagem, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2096-4873
  2. Matthew J Cuneo

    Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1475-6656
  3. Tanja Mittag

    Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    Tanja Mittag, Tanja Mittag was a consultant for Faze Medicines, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1827-3811
  4. Kresten Lindorff-Larsen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    lindorff@bio.ku.dk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4750-6039

Funding

Lundbeckfonden (R155-2015-2666)

  • Kresten Lindorff-Larsen

Novo Nordisk Fonden (NNF18OC0033950)

  • Kresten Lindorff-Larsen

National Institutes of Health (R01GM112846)

  • Tanja Mittag

American Lebanese Syrian Associated Charities

  • Tanja Mittag

Novo Nordisk Fonden (NNF18OC0032608)

  • Kresten Lindorff-Larsen

National Institutes of Health (P30GM133893)

  • Tanja Mittag

DOE Office of Biological and Environmental Research (KP1605010)

  • Tanja Mittag

National Institutes of Health (OD012331)

  • Tanja Mittag

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Qiang Cui, Boston University, United States

Version history

  1. Preprint posted: October 8, 2022 (view preprint)
  2. Received: October 12, 2022
  3. Accepted: February 20, 2023
  4. Accepted Manuscript published: March 1, 2023 (version 1)
  5. Version of Record published: March 9, 2023 (version 2)

Copyright

© 2023, Thomasen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,207
    views
  • 189
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. F Emil Thomasen
  2. Matthew J Cuneo
  3. Tanja Mittag
  4. Kresten Lindorff-Larsen
(2023)
Conformational and oligomeric states of SPOP from small-angle X-ray scattering and molecular dynamics simulations
eLife 12:e84147.
https://doi.org/10.7554/eLife.84147

Share this article

https://doi.org/10.7554/eLife.84147

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.