National Institutes of Health research project grant inflation 1998 to 2021

  1. Michael S Lauer  Is a corresponding author
  2. Joy Wang
  3. Deepshikha Roychowdhury
  1. National Institutes of Health, United States


We analyzed changes in total costs for National Institutes of Health (NIH) awarded Research Project Grants (RPG) issued from fiscal years (FYs) 1998 to 2003. Costs are measured in 'nominal' terms, meaning exactly as stated, or in 'real' terms, meaning after adjustment for inflation. The NIH uses a data-driven price index - the Biomedical Research and Development Price Index (BRDPI) - to account for inflation, enabling assessment of changes in real (that is, BRDPI-adjusted) costs over time. The BRDPI was higher than the general inflation rate from FY1998 until FY2012; since then the BRDPI has been similar to the general inflation rate likely due to caps on senior faculty salary support. Despite increases in nominal costs, recent years have seen increases in the absolute numbers of RPG and R01 awards. Real average and median RPG costs increased during the NIH-doubling (FY1998 to FY2003), decreased after the doubling and have remained relatively stable since. Of note, though, the degree of variation of RPG costs has changed over time, with more marked extremes observed on both higher and lower levels of cost. On both ends of the cost spectrum, the agency is funding a greater proportion of solicited projects, with nearly half of RPG money going towards solicited projects. After adjusting for confounders, we find no independent association of time with BRDPI-adjusted costs; in other words, changes in real costs are largely explained by changes in the composition of the NIH-grant portfolio.

Data availability

Anonymized source data (in Excel and .RData formats) have been provided as supplementary files. R markdown source code for the main paper and the appendix corresponds with all numbers, tables, and figures. There are no restrictions to use.

Article and author information

Author details

  1. Michael S Lauer

    Office of the Director, National Institutes of Health, Bethesda, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9217-8177
  2. Joy Wang

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Deepshikha Roychowdhury

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.


All authors are employees of the National Institutes of Health and prepared this manuscript as part of their official duties.

Reviewing Editor

  1. Clifford J Rosen, Maine Medical Center Research Institute, United States

Publication history

  1. Preprint posted: October 7, 2022 (view preprint)
  2. Received: October 17, 2022
  3. Accepted: January 18, 2023
  4. Accepted Manuscript published: February 10, 2023 (version 1)
  5. Accepted Manuscript updated: February 13, 2023 (version 2)
  6. Version of Record published: March 3, 2023 (version 3)


This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.


  • 897
    Page views
  • 112
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael S Lauer
  2. Joy Wang
  3. Deepshikha Roychowdhury
National Institutes of Health research project grant inflation 1998 to 2021
eLife 12:e84245.

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Karthickeyan Chella Krishnan, Elie-Julien El Hachem ... Aldons J Lusis
    Research Article

    Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.

    1. Computational and Systems Biology
    Swann Floc'hlay, Ramya Balaji ... Stein Aerts
    Research Article Updated

    Wound response programs are often activated during neoplastic growth in tumors. In both wound repair and tumor growth, cells respond to acute stress and balance the activation of multiple programs, including apoptosis, proliferation, and cell migration. Central to those responses are the activation of the JNK/MAPK and JAK/STAT signaling pathways. Yet, to what extent these signaling cascades interact at the cis-regulatory level and how they orchestrate different regulatory and phenotypic responses is still unclear. Here, we aim to characterize the regulatory states that emerge and cooperate in the wound response, using the Drosophila melanogaster wing disc as a model system, and compare these with cancer cell states induced by rasV12scrib-/- in the eye disc. We used single-cell multiome profiling to derive enhancer gene regulatory networks (eGRNs) by integrating chromatin accessibility and gene expression signals. We identify a ‘proliferative’ eGRN, active in the majority of wounded cells and controlled by AP-1 and STAT. In a smaller, but distinct population of wound cells, a ‘senescent’ eGRN is activated and driven by C/EBP-like transcription factors (Irbp18, Xrp1, Slow border, and Vrille) and Scalloped. These two eGRN signatures are found to be active in tumor cells at both gene expression and chromatin accessibility levels. Our single-cell multiome and eGRNs resource offers an in-depth characterization of the senescence markers, together with a new perspective on the shared gene regulatory programs acting during wound response and oncogenesis.