Multimodal mapping of cell types and projections in the central nucleus of the amygdala

  1. Yuhan Wang
  2. Sabine Krabbe
  3. Mark Eddison
  4. Fredrick E Henry
  5. Greg Fleishman
  6. Andrew L Lemire
  7. Lihua Wang
  8. Wyatt Korff
  9. Paul W Tillberg
  10. Andreas Lüthi
  11. Scott Sternson  Is a corresponding author
  1. Janelia Research Campus, United States
  2. German Center for Neurodegenerative Diseases, Germany
  3. Friedrich Miescher Institute, Switzerland
  4. Howard Hughes Medical Institute, University of California, San Diego, United States

Abstract

The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-Seq) to classify molecularly defined cell types in the CEA and identified marker genes to map the location of these neuronal types using expansion asisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ~30,000 molecularly defined CEA neurons. Our study revealed spatio-molecular organization of the CEA, with medial and lateral CEA associated with distinct molecularly defined cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.

Data availability

All data generated in this study have been deposited at figshare (https://figshare.com/s/a031a8dfca1b4d25d3de). We also provide an interactive data portal for data visualization at http://multifish-data.janelia.org/. The single-cell RNA-seq dataset generated in this study has been deposited to GEO (Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE213828. Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

The following data sets were generated

Article and author information

Author details

  1. Yuhan Wang

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4447-5043
  2. Sabine Krabbe

    German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark Eddison

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fredrick E Henry

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Greg Fleishman

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew L Lemire

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0624-3789
  7. Lihua Wang

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wyatt Korff

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8396-1533
  9. Paul W Tillberg

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2568-2365
  10. Andreas Lüthi

    Friedrich Miescher Institute, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Scott Sternson

    Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, United States
    For correspondence
    ssternson@health.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0835-444X

Funding

Howard Hughes Medical Institute

  • Scott Sternson

Dementia Research Switzerland

  • Sabine Krabbe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All methods for animal care and use were conducted according to National Institutes of Health guidelines for animal research and approved by the Institutional Animal Care and Use Committee (IACUC) at Janelia Research Campus (Protocol number: 19-174).

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,239
    views
  • 1,150
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuhan Wang
  2. Sabine Krabbe
  3. Mark Eddison
  4. Fredrick E Henry
  5. Greg Fleishman
  6. Andrew L Lemire
  7. Lihua Wang
  8. Wyatt Korff
  9. Paul W Tillberg
  10. Andreas Lüthi
  11. Scott Sternson
(2023)
Multimodal mapping of cell types and projections in the central nucleus of the amygdala
eLife 12:e84262.
https://doi.org/10.7554/eLife.84262

Share this article

https://doi.org/10.7554/eLife.84262

Further reading

    1. Neuroscience
    Samuel Noorman, Timo Stein ... Simon van Gaal
    Research Article

    This study investigates failures in conscious access resulting from either weak sensory input (perceptual impairments) or unattended input (attentional impairments). Participants viewed a Kanizsa stimulus with or without an illusory triangle within a rapid serial visual presentation of distractor stimuli. We designed a novel Kanizsa stimulus that contained additional ancillary features of different complexity (local contrast and collinearity) that were independently manipulated. Perceptual performance on the Kanizsa stimulus (presence vs. absence of an illusion) was equated between the perceptual (masking) and attentional (attentional blink) manipulation to circumvent common confounds related to conditional differences in task performance. We trained and tested classifiers on electroencephalogram (EEG) data to reflect the processing of specific stimulus features, with increasing levels of complexity. We show that late stages of processing (~200–250 ms), reflecting the integration of complex stimulus features (collinearity, illusory triangle), were impaired by masking but spared by the attentional blink. In contrast, decoding of local contrast (the spatial arrangement of stimulus features) was observed early in time (~80 ms) and was left largely unaffected by either manipulation. These results replicate previous work showing that feedforward processing is largely preserved under both perceptual and attentional impairments. Crucially, however, under matched levels of performance, only attentional impairments left the processing of more complex visual features relatively intact, likely related to spared lateral and local feedback processes during inattention. These findings reveal distinct neural mechanisms associated with perceptual and attentional impairments and thus contribute to a comprehensive understanding of distinct neural stages leading to conscious access.

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.