Multimodal mapping of cell types and projections in the central nucleus of the amygdala

  1. Yuhan Wang
  2. Sabine Krabbe
  3. Mark Eddison
  4. Fredrick E Henry
  5. Greg Fleishman
  6. Andrew L Lemire
  7. Lihua Wang
  8. Wyatt Korff
  9. Paul W Tillberg
  10. Andreas Lüthi
  11. Scott Sternson  Is a corresponding author
  1. Janelia Research Campus, United States
  2. German Center for Neurodegenerative Diseases, Germany
  3. Friedrich Miescher Institute, Switzerland
  4. Howard Hughes Medical Institute, University of California, San Diego, United States

Abstract

The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-Seq) to classify molecularly defined cell types in the CEA and identified marker genes to map the location of these neuronal types using expansion asisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ~30,000 molecularly defined CEA neurons. Our study revealed spatio-molecular organization of the CEA, with medial and lateral CEA associated with distinct molecularly defined cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.

Data availability

All data generated in this study have been deposited at figshare (https://figshare.com/s/a031a8dfca1b4d25d3de). We also provide an interactive data portal for data visualization at http://multifish-data.janelia.org/. The single-cell RNA-seq dataset generated in this study has been deposited to GEO (Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE213828. Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

The following data sets were generated

Article and author information

Author details

  1. Yuhan Wang

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4447-5043
  2. Sabine Krabbe

    German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark Eddison

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fredrick E Henry

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Greg Fleishman

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew L Lemire

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0624-3789
  7. Lihua Wang

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wyatt Korff

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8396-1533
  9. Paul W Tillberg

    Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2568-2365
  10. Andreas Lüthi

    Friedrich Miescher Institute, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Scott Sternson

    Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, United States
    For correspondence
    ssternson@health.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0835-444X

Funding

Howard Hughes Medical Institute

  • Scott Sternson

Dementia Research Switzerland

  • Sabine Krabbe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mario A Penzo, National Institute of Mental Health, United States

Ethics

Animal experimentation: All methods for animal care and use were conducted according to National Institutes of Health guidelines for animal research and approved by the Institutional Animal Care and Use Committee (IACUC) at Janelia Research Campus (Protocol number: 19-174).

Version history

  1. Received: October 17, 2022
  2. Preprint posted: October 22, 2022 (view preprint)
  3. Accepted: January 18, 2023
  4. Accepted Manuscript published: January 20, 2023 (version 1)
  5. Version of Record published: February 28, 2023 (version 2)

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,713
    views
  • 813
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuhan Wang
  2. Sabine Krabbe
  3. Mark Eddison
  4. Fredrick E Henry
  5. Greg Fleishman
  6. Andrew L Lemire
  7. Lihua Wang
  8. Wyatt Korff
  9. Paul W Tillberg
  10. Andreas Lüthi
  11. Scott Sternson
(2023)
Multimodal mapping of cell types and projections in the central nucleus of the amygdala
eLife 12:e84262.
https://doi.org/10.7554/eLife.84262

Share this article

https://doi.org/10.7554/eLife.84262

Further reading

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.