An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion

  1. Tricia T Nguyen
  2. Gia K Voeltz  Is a corresponding author
  1. University of Colorado Boulder, United States

Abstract

Mitochondria are dynamic organelles that undergo cycles of fission and fusion at a unified platform defined by endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCSs). These MCSs or nodes co-localize fission and fusion machinery. We set out to identify how ER-associated mitochondrial nodes can regulate both fission and fusion machinery assembly. We have used a promiscuous biotin ligase linked to the fusion machinery, Mfn1, and proteomics to identify an ER membrane protein, ABHD16A, as a major regulator of node formation. In the absence of ABHD16A, fission and fusion machineries fail to recruit to ER-associated mitochondrial nodes and fission and fusion rates are significantly reduced. ABHD16A contains an acyltransferase motif and an α/β hydrolase domain and point mutations in critical residues of these regions fail to rescue the formation of ER-associated mitochondrial hot spots. These data suggest a mechanism whereby ABHD16A functions by altering phospholipid composition at ER-mitochondria MCSs. Our data present the first example of an ER membrane protein that regulates the recruitment of both fission and fusion machineries to mitochondria.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source Data files have been provided for Figures 1-7 and supplementary Figures 1, 2, 4, 5, and 6. Source data contains numerical data or either uncropped western blots used to generate the figures.

Article and author information

Author details

  1. Tricia T Nguyen

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2314-7147
  2. Gia K Voeltz

    Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
    For correspondence
    gia.voeltz@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3199-5402

Funding

National Institutes of Health (T32 Training Grants GM008759 and GM142607)

  • Tricia T Nguyen

National Institutes of Health (GM120998)

  • Gia K Voeltz

Howard Hughes Medical Institute

  • Gia K Voeltz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: October 18, 2022
  2. Preprint posted: October 24, 2022 (view preprint)
  3. Accepted: November 29, 2022
  4. Accepted Manuscript published: November 30, 2022 (version 1)
  5. Version of Record published: December 6, 2022 (version 2)

Copyright

© 2022, Nguyen & Voeltz

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,547
    Page views
  • 584
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tricia T Nguyen
  2. Gia K Voeltz
(2022)
An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion
eLife 11:e84279.
https://doi.org/10.7554/eLife.84279

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas, Benjamin A Himes, Nikolaus Grigorieff
    Research Advance

    Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.

    1. Cell Biology
    2. Immunology and Inflammation
    Yijun Zhang, Tao Wu ... Li Wu
    Research Article

    Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.