An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion

  1. Tricia T Nguyen
  2. Gia K Voeltz  Is a corresponding author
  1. University of Colorado Boulder, United States

Abstract

Mitochondria are dynamic organelles that undergo cycles of fission and fusion at a unified platform defined by endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCSs). These MCSs or nodes co-localize fission and fusion machinery. We set out to identify how ER-associated mitochondrial nodes can regulate both fission and fusion machinery assembly. We have used a promiscuous biotin ligase linked to the fusion machinery, Mfn1, and proteomics to identify an ER membrane protein, ABHD16A, as a major regulator of node formation. In the absence of ABHD16A, fission and fusion machineries fail to recruit to ER-associated mitochondrial nodes and fission and fusion rates are significantly reduced. ABHD16A contains an acyltransferase motif and an α/β hydrolase domain and point mutations in critical residues of these regions fail to rescue the formation of ER-associated mitochondrial hot spots. These data suggest a mechanism whereby ABHD16A functions by altering phospholipid composition at ER-mitochondria MCSs. Our data present the first example of an ER membrane protein that regulates the recruitment of both fission and fusion machineries to mitochondria.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source Data files have been provided for Figures 1-7 and supplementary Figures 1, 2, 4, 5, and 6. Source data contains numerical data or either uncropped western blots used to generate the figures.

Article and author information

Author details

  1. Tricia T Nguyen

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2314-7147
  2. Gia K Voeltz

    Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
    For correspondence
    gia.voeltz@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3199-5402

Funding

National Institutes of Health (T32 Training Grants GM008759 and GM142607)

  • Tricia T Nguyen

National Institutes of Health (GM120998)

  • Gia K Voeltz

Howard Hughes Medical Institute

  • Gia K Voeltz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: October 18, 2022
  2. Preprint posted: October 24, 2022 (view preprint)
  3. Accepted: November 29, 2022
  4. Accepted Manuscript published: November 30, 2022 (version 1)
  5. Version of Record published: December 6, 2022 (version 2)

Copyright

© 2022, Nguyen & Voeltz

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,417
    views
  • 675
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tricia T Nguyen
  2. Gia K Voeltz
(2022)
An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion
eLife 11:e84279.
https://doi.org/10.7554/eLife.84279

Share this article

https://doi.org/10.7554/eLife.84279

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.