Early-life experience reorganizes neuromodulatory regulation of stage-specific behavioral responses and individuality dimensions during development
Abstract
Early-life experiences may promote stereotyped behavioral alterations that are dynamic across development time, but also behavioral responses that are variable among individuals, even when initially exposed to the same stimulus. Here, by utilizing longitudinal monitoring of C. elegans individuals throughout development we show that behavioral effects of early-life starvation are exposed during early and late developmental stages and buffered during intermediate stages of development. We further found that both dopamine and serotonin shape the discontinuous behavioral responses by opposite and temporally segregated functions across development time. While dopamine buffers behavioral responses during intermediate developmental stages, serotonin promotes behavioral sensitivity to stress during early and late stages. Interestingly, unsupervised analysis of individual biases across development uncovered multiple individuality dimensions that coexist within stressed and unstressed populations and further identified experience-dependent effects on variation within specific individuality dimensions. These results provide insight into the complex temporal regulation of behavioral plasticity across developmental timescales, structuring shared and unique individual responses to early-life experiences.
Data availability
Behavioral datasets have been deposited in Mendeleyhttps://data.mendeley.com/datasets/kxrcmtyfr6/draft?a=4f4e420b-5d9b-42e6-890a-16e6332ffe0ahttps://data.mendeley.com/datasets/fgsyppvpnc/draft?a=bc4739f1-7311-4019-99e0-ec3bfb51e8f6Code of individuality analysis was deposited inhttps://github.com/yha/ElegansIndividuality
Article and author information
Author details
Funding
HORIZON EUROPE European Research Council (ERC-2019-STG)
- Shay Stern
Israel Science Foundation (3035/20)
- Shay Stern
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Ali Nasser et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,322
- views
-
- 169
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.
-
- Cell Biology
- Neuroscience
Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal. SNX4 depletion did not affect vesicle recycling, basic autophagic flux, or the levels and localization of SNARE-protein VAMP2/synaptobrevin-2. However, SNX4 depletion affected synapse ultrastructure: an increase in docked synaptic vesicles at the active zone, while the overall vesicle number was normal, and a decreased active zone length. These effects together lead to a substantially increased density of docked vesicles per release site. In conclusion, SNX4 is a negative regulator of synaptic vesicle docking and release. These findings suggest a role for SNX4 in synaptic vesicle recruitment at the active zone.