An herbal drug combination identified by knowledge graph alleviates the clinical symptoms of plasma cell mastitis patients: a nonrandomized controlled trial

  1. Caigang Liu  Is a corresponding author
  2. Hong Yu
  3. Guanglei Chen
  4. Qichao Yang
  5. Zichu Wang
  6. Nan Niu
  7. Ling Han
  8. Dongyu Zhao
  9. Manji Wang
  10. Yuanyuan Liu
  11. Yongliang Yang  Is a corresponding author
  1. Shengjing Hospital of China Medical University, China
  2. Dalian University of Technology, China
  3. China Resources Sanjiu Medical and Pharmaceutical Co, Ltd, China
  4. Peking University, China
  5. Shanghai BeautMed Corporation, China
  6. University of Copenhagen, Denmark

Abstract

Background: Plasma cell mastitis (PCM) is a nonbacterial breast inflammation with severe and intense clinical manifestation yet treatment methods for PCM are still rather limited. Although the mechanism of PCM remains unclear, mounting evidences suggest that the dysregulation of immune system is closely associated with the pathogenesis of PCM. Drug combinations or combination therapy could exert improved efficacy and reduced toxicity through hitting multiple discrete cellular targets.

Methods: We have developed a knowledge graph architecture towards immunotherapy and systematic immunity that consists of herbal drug-target interactions with a novel scoring system to select drug combinations based on target-hitting rates and phenotype relativeness. To this end, we employed this knowledge graph to identify an herbal drug combination for PCM and we subsequently evaluated the efficacy of the herbal drug combination in clinical trial.

Results: Our clinical data suggests that the herbal drug combination could significantly reduce the serum level of various inflammatory cytokines, downregulate serum IgA and IgG level, reduce the recurrence rate and reverse the clinical symptoms of PCM patients with improvements of general health status.

Conclusions: In summary, we reported that an herbal drug combination identified by knowledge graph can alleviate the clinical symptoms of plasma cell mastitis patients. We demonstrated that the herbal drug combination holds great promise as an effective remedy for PCM, acting through the regulation of immunoinflammatory pathways and improvement of systematic immune level. In particular, the herbal drug combination could significantly reduce the recurrence rate of PCM, a major obstacle for PCM treatment. Our data suggests that the herbal drug combination is expected to feature prominently in future PCM treatment.

Funding: Liu's lab was supported by grants from the Public Health Science and Technology Project of Shenyang (Grant: 22-321-32-18), Y. Yang's laboratory was supported by the National Natural Science Foundation of China (Grant: 81874301); the Fundamental Research Funds for Central University (Grant: DUT22YG122) and the Key Research project of 'be Recruited and be in Command' in Liaoning Province (2021JH1/10400050).

Clinical trial number: ClinicalTrials.gov: NCT05530226.

Data availability

Figure 1-3 are computational study and therefore no data have been generated for the manuscript. In addition, Figure 4 - Source Data, Figure 5 - Source Data, Figure 6 - Source Data 1, Figure 6 - Source Data 2 and Figure 6 - Source Data 3 contain the numerical data used to generate the figures have been included in the manuscript.

Article and author information

Author details

  1. Caigang Liu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    For correspondence
    angel-s205@163.com
    Competing interests
    Caigang Liu, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2083-235X
  2. Hong Yu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  3. Guanglei Chen

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  4. Qichao Yang

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  5. Zichu Wang

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  6. Nan Niu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  7. Ling Han

    China Resources Sanjiu Medical and Pharmaceutical Co, Ltd, Shenzhen, China
    Competing interests
    Ling Han, is an employee of China Resources Sanjiu Medical & Pharmaceutical..
  8. Dongyu Zhao

    International Cancer Institute, Peking University, Beijing, China
    Competing interests
    No competing interests declared.
  9. Manji Wang

    Shanghai BeautMed Corporation, Shanghai, China
    Competing interests
    Manji Wang, is an employee of Shanghai BeautMed Corporation..
  10. Yuanyuan Liu

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  11. Yongliang Yang

    School of Bioengineering, Dalian University of Technology, Dalian, China
    For correspondence
    everbright99@foxmail.com
    Competing interests
    Yongliang Yang, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0449-0599

Funding

National Natural Science Foundation of China (81874301)

  • Yongliang Yang

National Natural Science Foundation of China (81572609)

  • Caigang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The protocol was approved by the Institutional Review Board (IRB) of the China Medical University (approval number: 2021PS024T). This study was registered with ClinicalTrials.gov: NCT05530226. All patients provided written informed consent.

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 604
    views
  • 130
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caigang Liu
  2. Hong Yu
  3. Guanglei Chen
  4. Qichao Yang
  5. Zichu Wang
  6. Nan Niu
  7. Ling Han
  8. Dongyu Zhao
  9. Manji Wang
  10. Yuanyuan Liu
  11. Yongliang Yang
(2023)
An herbal drug combination identified by knowledge graph alleviates the clinical symptoms of plasma cell mastitis patients: a nonrandomized controlled trial
eLife 12:e84414.
https://doi.org/10.7554/eLife.84414

Share this article

https://doi.org/10.7554/eLife.84414

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Medicine
    Christin Krause, Jan H Britsemmer ... Henriette Kirchner
    Research Article

    Background:

    The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing.

    Methods:

    Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice.

    Results:

    Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182–5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182–5 p overexpression. Weight loss in obese mice decreased hepatic miR-182–5 p and restored Lrp6 expression and other miR-182–5 p target genes. Hepatic overexpression of miR-182–5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days.

    Conclusions:

    By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182–5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182–5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis.

    Funding:

    This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).