Behavioral dissection of hunger states in Drosophila

  1. Kristina J Weaver  Is a corresponding author
  2. Sonakshi Raju
  3. Rachel A Rucker
  4. Tuhin Chakraborty
  5. Robert A Holt
  6. Scott D Pletcher  Is a corresponding author
  1. Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, United States
  2. College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan, United States
  3. Neuroscience Graduate Program, University of Michigan, University of Michigan, United States
5 figures, 2 tables and 1 additional file

Figures

Figure 1 with 1 supplement
Characterization of feeding micro-behaviors in flies.

(A) Cartoon schematic of setup for filming flies on the Fly Liquid-Food Interaction Counter (FLIC). Frame capture is triggered by interactions of flies with the food source. (B) Frequency of all …

Figure 1—source data 1

Excel spreadsheet containing source data used to generate Figures 1B-D.

https://cdn.elifesciences.org/articles/84537/elife-84537-fig1-data1-v1.xls
Figure 1—figure supplement 1
24 hr FLIC recording demonstrating distinct morning and evening feeding peaks.

(A) Representative temporal plot of food interactions on 2% sucrose Fly Liquid-Food Interaction Counter (FLIC) from female Canton-S flies monitored over 24 hr. Each data point represents the binned …

Fly Liquid-Food Interaction Counter (FLIC) signal characteristics distinguish between event types.

(A–C) Representative FLIC signal generated during a visually identified interaction (I), fast feeding (F), or long feeding (L/LQ) event. (D–I) Signal characteristics generated by the FLIC during …

Figure 2—source data 1

Excel spreadsheet containing source data used to generate Figures 2D-I.

https://cdn.elifesciences.org/articles/84537/elife-84537-fig2-data1-v1.xls
Figure 3 with 1 supplement
Feeding event durations are increased by hedonic food environments.

(A) Cartoon schematic of event number and event duration (top). Cartoon schematic of hedonic and control food choice environments, and comparisons used to define metrics for homeostatic and hedonic …

Figure 3—source data 1

Excel spreadsheet containing source data used to generate Figures 3B-M and Figure 3 - Figure Supplement 1A-C.

https://cdn.elifesciences.org/articles/84537/elife-84537-fig3-data1-v1.xls
Figure 3—figure supplement 1
Hedonic food environments do not elicit increases in total number of events or event durations with yeast but do promote increased volumetric intake.

(A) Consumption-excretion (Con-Ex) measurement of volumetric sucrose consumptions (left panel) and total mass consumed (right panel) in the control vs. hedonic food environments from female Canton-S

Hedonic feeding is modulated by homeostatic hunger.

(A) Total number of events with sucrose or yeast in the control food choice environment from sated or 24 hr starved female Canton-S flies (two-way ANOVA with Tukey’s post hoc). (B) Total number of …

Figure 4—source data 1

Excel spreadsheet containing source data used to generate Figures 4A-D.

https://cdn.elifesciences.org/articles/84537/elife-84537-fig4-data1-v1.xls
Figure 5 with 13 supplements
Hedonic hunger requires distinct mushroom body lobes.

(A) Representative maximum intensity projections from brains of flies expressing Nsyb-GAL4>UAS-CaMPARI exposed to control or hedonic food environments, quantified at right (scale bar = 100 µM, …

Figure 5—source data 1

Excel spreadsheet containing source data used to generate Figures 5A-G and Figure 5 - Figure Supplements 1A-C.

https://cdn.elifesciences.org/articles/84537/elife-84537-fig5-data1-v1.xls
Figure 5—figure supplement 1
Mushroom body lobes are not required for homeostatic hunger.

(A–C) Total number of events with sucrose or yeast in the control food choice environment from 24 hr starved female flies expressing UAS-GtACR driven by either (A) MB131B-GAL4 (γ(d);γ(m)), (B) MB008B…

Figure 5—video 1
NsybCaMPARI stacks control environment green, related to Figure 5A–B.

Movies of confocal z-stacks through whole brains of flies carrying Nsyb-Gal4>UAS-CaMPARI (Figure 5—videos 1–6) or MB238Y-GAL4>UAS-CaMPARI (Figure 5—videos 7–12) in control or hedonic food …

Figure 5—video 2
NsybCaMPARI stacks control environment red.
Figure 5—video 3
NsybCaMPARI stacks control environment merge.
Figure 5—video 4
NsybCaMPARI stacks hedonic environment green.
Figure 5—video 5
NsybCaMPARI stacks hedonic environment red.
Figure 5—video 6
NsybCaMPARI stacks hedonic environment merge.
Figure 5—video 7
MBCaMPARI stacks control environment green.
Figure 5—video 8
MBCaMPARI stacks control environment red.
Figure 5—video 9
MBCaMPARI stacks control environment merge.
Figure 5—video 10
MBCaMPARI stacks hedonic environment green.
Figure 5—video 11
MBCaMPARI stacks hedonic environment red.
Figure 5—video 12
MBCaMPARI stacks hedonic environment merge.

Tables

Table 1
Library of feeding micro-behaviors.
Main event typeCodeBehavior description
Other (O)GGroom
UCUnknown contact
Interaction (I)IFFront legs touch food
IHHind legs touch food
Fast feeding (F)FSingle movement of proboscis into food to feed for 1–3 s
FIMeets requirements for F and I
Long feeding (L)LProboscis continuously in food while feeding for >4 s
LIMeets requirements for L and I
Long/quick feeding (L)LQProboscis moves in and out quickly while feeding for >4 s
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Genetic reagent (Drosophila melanogaster)Canton-SBloomington Drosophila Stock Center
Genetic reagent (Drosophila melanogaster)UAS-CaMPARIBloomington Drosophila Stock CenterBDSC #68762
RRID:BDSC_68762
Genetic reagent (Drosophila melanogaster)MB238Y-GAL4Bloomington Drosophila Stock CenterBDSC #81009
RRID:BDSC_81009
Genetic reagent (Drosophila melanogaster)MB131B-GAL4Bloomington Drosophila Stock CenterBDSC #68265
RRID:BDSC_68265
Genetic reagent (Drosophila melanogaster)MB008B-GAL4Bloomington Drosophila Stock CenterBDSC #68291
RRID:BDSC_68291
Genetic reagent (Drosophila melanogaster)MB461B-GAL4Bloomington Drosophila Stock CenterBDSC #68327
RRID:BDSC_68327
Genetic reagent (Drosophila melanogaster)GMR58E02-GAL4Bloomington Drosophila Stock CenterBDSC #41347
RRID:BDSC_41347
Genetic reagent (Drosophila melanogaster)LexAop2-CsChrimson;UAS-CaMPARI2;GMR57C10-GAL4Bloomington Drosophila Stock CenterBDSC #81089
RRID:BDSC_81089
Genetic reagent (Drosophila melanogaster)UAS-GtACROtherM. Dus (University of Michigan)
Software, algorithmRStudioRStudioRRID:SCR_000432
Software, algorithmFijiImageJRRID:SCR_002285
Software, algorithmFLIC analysis R codeFlideaRRID:SCR_018386
Software, algorithmDTrackOtherS. Pletcher (University of Michigan)
OtherFLIC Drosophila Feeding MonitorsSable SystemsModel DFMV3https://www.sablesys.com/products/classic-line/flic_drosophila_behavior_system/
OtherFLIR grasshopper cameraFLIRGS3-U3-28S5C-C#88-052 - GS3-U3-28S5C-C 2/3" FLIR Grasshopper3 High Performance USB 3.0 Color Camera
OtherFujinon varifocal lensFujinonMFR #DV3.4x3.8SA-1Fujinon 3 MP varifocal lens (3.8–13 mm, 3.4× zoom)

Additional files

Download links