The prolactin receptor scaffolds Janus kinase 2 via co-structure formation with phosphoinositide-4,5-bisphosphate

Abstract

Class 1 cytokine receptors transmit signals through the membrane by a single transmembrane helix to an intrinsically disordered cytoplasmic domain that lacks kinase activity. While specific binding to phosphoinositides has been reported for the prolactin receptor (PRLR), the role of lipids in PRLR signalling is unclear. Using an integrative approach combining NMR spectroscopy, cellular signalling experiments, computational modelling and simulation, we demonstrate co-structure formation of the disordered intracellular domain of the human PRLR, the membrane constituent phosphoinositide-4,5-bisphosphate (PI(4,5)P2) and the FERM-SH2 domain of the Janus kinase 2 (JAK2). We find that the complex leads to accumulation of PI(4,5)P2 at the transmembrane helix interface and that mutation of residues identified to interact specifically with PI(4,5)P2 negatively affects PRLR-mediated activation of signal transducer and activator of transcription 5 (STAT5). Facilitated by co-structure formation, the membrane-proximal disordered region arranges into an extended structure. We suggest that the co-structure formed between PRLR, JAK2 and PI(4,5)P2 locks the juxtamembrane disordered domain of the PRLR in an extended structure, enabling signal relay from the extracellular to the intracellular domain upon ligand binding. We find that the co-structure exists in different states which we speculate could be relevant for turning signalling on and off. Similar co-structures may be relevant for other non-receptor tyrosine kinases and their receptors.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The MD data and models together with the scripts used in the trajectory analysis are available on Github at https://github.com/Niels-Bohr-Institute-XNS-StructBiophys/PRLRmodel. NMR chemical shifts for the GHR-ICD-LID1 are deposited in the BioMagResBank under the accession number 51695.

The following data sets were generated

Article and author information

Author details

  1. Raul Araya-Secchi

    Facultad de Ingenieria Arquitectura y Diseño, Universidad San Sebastian, Santiago, Chile
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4872-3553
  2. Katrine Bugge

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6286-6243
  3. Pernille Seiffert

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Amalie Petry

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Gitte W Haxholm

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Kresten Lindorff-Larsen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4750-6039
  7. Stine Falsig Pedersen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    sfpedersen@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3044-7714
  8. Lise Arleth

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    arleth@nbi.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4694-4299
  9. Birthe B Kragelund

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    bbk@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7454-1761

Funding

Novo Nordisk Fonden (NNF18OC0033926)

  • Birthe B Kragelund

Novo Nordisk Fonden (NNF15OC0016670)

  • Birthe B Kragelund

Lundbeckfonden (BRAINSTRUC)

  • Kresten Lindorff-Larsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Araya-Secchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,099
    views
  • 178
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raul Araya-Secchi
  2. Katrine Bugge
  3. Pernille Seiffert
  4. Amalie Petry
  5. Gitte W Haxholm
  6. Kresten Lindorff-Larsen
  7. Stine Falsig Pedersen
  8. Lise Arleth
  9. Birthe B Kragelund
(2023)
The prolactin receptor scaffolds Janus kinase 2 via co-structure formation with phosphoinositide-4,5-bisphosphate
eLife 12:e84645.
https://doi.org/10.7554/eLife.84645

Share this article

https://doi.org/10.7554/eLife.84645