Comparative single-cell profiling reveals distinct cardiac resident macrophages essential for zebrafish heart regeneration

  1. Ke-Hsuan Wei
  2. I-Ting Lin
  3. Kaushik Chowdhury
  4. Khai Lone Lim
  5. Kuan-Ting Liu
  6. Tai-Ming Ko
  7. Yao-Ming Chang
  8. Kai-Chien Yang
  9. Shih-Lei Lai  Is a corresponding author
  1. Institute of Biomedical Sciences, Academia Sinica, Taiwan
  2. National Yang Ming Chiao Tung University, Taiwan
  3. National Taiwan University, Taiwan

Abstract

Zebrafish exhibit a robust ability to regenerate their hearts following injury, and the immune system plays a key role in this process. We previously showed that delaying macrophage recruitment by clodronate liposome (-1d_CL, macrophage-delayed model) impairs neutrophil resolution and heart regeneration, even when the infiltrating macrophage number was restored within the first-week post injury (Lai et al., 2017). It is thus intriguing to learn the regenerative macrophage property by comparing these late macrophages vs. control macrophages during cardiac repair. Here, we further investigate the mechanistic insights of heart regeneration by comparing the non-regenerative macrophage-delayed model with regenerative controls. Temporal RNAseq analyses revealed that -1d_CL treatment led to disrupted inflammatory resolution, ROS homeostasis, and energy metabolism during cardiac repair. Comparative single-cell RNAseq profiling of inflammatory cells from regenerative vs. non-regenerative hearts further identified heterogeneous macrophages and neutrophils, showing alternative activation and cellular crosstalk leading to neutrophil retention and chronic inflammation. Among macrophages, two residential subpopulations (hbaa+ Mac 2 and timp4.3+ Mac 3) were enriched only in regenerative hearts and barely recovered after -1d_CL treatment. To deplete the resident macrophage without delaying the circulating macrophage recruitment, we established the resident macrophage-deficient model by administrating CL earlier at 8 days (-8d_CL) before cryoinjury. Strikingly, resident macrophage-deficient zebrafish still exhibited defects in revascularization, cardiomyocyte survival, debris clearance, and ECM remodeling/scar resolution without functional compensation from the circulating/monocyte-derived macrophages. Our results characterized the diverse function and interaction between inflammatory cells and identified unique resident macrophages prerequisite for zebrafish heart regeneration.

Data availability

All data generated or analyzed during this study have been included in the manuscript and uploaded to a public entry for raw reads of both bulk and single-cell RNAseq on NCBI SRA database (accession no. PRJNA900299). Source data files of respective figures have been provided.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ke-Hsuan Wei

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  2. I-Ting Lin

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaushik Chowdhury

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Khai Lone Lim

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  5. Kuan-Ting Liu

    Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  6. Tai-Ming Ko

    Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yao-Ming Chang

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  8. Kai-Chien Yang

    Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  9. Shih-Lei Lai

    Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
    For correspondence
    ben.s.lai@ibms.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1409-4701

Funding

Institute of Biomedical Sciences, Academia Sinica (IBMS-CRC108-P01)

  • Shih-Lei Lai

Ministry of Science and Technology, Taiwan (MOST 108-2320-B-001-032-MY2)

  • Shih-Lei Lai

Academia Sinica (AS-GC-110-P7)

  • Shih-Lei Lai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Academia Sinica. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (Protocol ID: 18-12-1241) of Academia Sinica. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Academia Sinica. All surgery was performed under tricaine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2023, Wei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,059
    views
  • 365
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ke-Hsuan Wei
  2. I-Ting Lin
  3. Kaushik Chowdhury
  4. Khai Lone Lim
  5. Kuan-Ting Liu
  6. Tai-Ming Ko
  7. Yao-Ming Chang
  8. Kai-Chien Yang
  9. Shih-Lei Lai
(2023)
Comparative single-cell profiling reveals distinct cardiac resident macrophages essential for zebrafish heart regeneration
eLife 12:e84679.
https://doi.org/10.7554/eLife.84679

Share this article

https://doi.org/10.7554/eLife.84679

Further reading

    1. Developmental Biology
    Igor Kondrychyn, Liqun He ... Li-Kun Phng
    Research Article

    Cell migration is a key process in the shaping and formation of tissues. During sprouting angiogenesis, endothelial tip cells invade avascular tissues by generating actomyosin-dependent forces that drive cell migration and vascular expansion. Surprisingly, endothelial cells (ECs) can still invade if actin polymerization is inhibited. In this study, we show that endothelial tip cells employ an alternative mechanism of cell migration that is dependent on Aquaporin (Aqp)-mediated water inflow and increase in hydrostatic pressure. In the zebrafish, ECs express aqp1a.1 and aqp8a.1 in newly formed vascular sprouts in a VEGFR2-dependent manner. Aqp1a.1 and Aqp8a.1 loss-of-function studies show an impairment in intersegmental vessels formation because of a decreased capacity of tip cells to increase their cytoplasmic volume and generate membrane protrusions, leading to delayed tip cell emergence from the dorsal aorta and slower migration. Further inhibition of actin polymerization resulted in a greater decrease in sprouting angiogenesis, indicating that ECs employ two mechanisms for robust cell migration in vivo. Our study thus highlights an important role of hydrostatic pressure in tissue morphogenesis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.