Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks
Abstract
External tasks evoke characteristic fMRI BOLD signal deactivations in the default mode network (DMN). However, for the corresponding metabolic glucose demands both decreases and increases have been reported. To resolve this discrepancy, functional PET/MRI data from 50 healthy subjects performing Tetris® were combined with previously published data sets of working memory, visual and motor stimulation. We show that the glucose metabolism of the posteromedial DMN is dependent on the metabolic demands of the correspondingly engaged task-positive networks. Specifically, the dorsal attention and frontoparietal network shape the glucose metabolism of the posteromedial DMN in opposing directions. While tasks that mainly require an external focus of attention lead to a consistent downregulation of both metabolism and the BOLD signal in the posteromedial DMN, cognitive control during working memory requires a metabolically expensive BOLD suppression. This indicates that two types of BOLD deactivations with different-oxygen-to-glucose index may occur in this region. We further speculate that consistent downregulation of the two signals is mediated by decreased glutamate signaling, while divergence may be subject to active GABAergic inhibition. The results demonstrate that the DMN relates to cognitive processing in a flexible manner and does not always act as a cohesive task-negative network in isolation.
Data availability
Raw data will not be publicly available due to reasons of data protection. Sharing of raw data requires a data sharing agreement, approved by the departments of legal affairs and data clearing of the Medical University of Vienna. Details about this process can be obtained from the corresponding author. Processed data are available at Dryad https://doi.org/10.5061/dryad.5qfttdzbd. Custom code is available at GitHub https://github.com/NeuroimagingLabsMUV/Godbersen2023_eLife.
-
Data from: Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networksDryad Digital Repository, doi:10.5061/dryad.5qfttdzbd.
Article and author information
Author details
Funding
Austrian Science Fund (KLI610)
- Andreas Hahn
Medical University of Vienna (MDPhD Excellence Programm)
- Sebastian Klug
European Research Council (ERC-STG-716065)
- Anna Rieckmann
- Lars Stiernman
National Health and Medical Research Council (GN2001283)
- Luca Cocchi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants provided written informed consent after a detailed explanation of the study protocol, they were insured and reimbursed for participation. The study was approved by the Ethics Committee of the Medical University of Vienna (ethics number 1479/2015) and procedures were carried out according to the Declaration of Helsinki. The study was pre-registered at ClinicalTrials.gov (NCT03485066).
Reviewing Editor
- Shella Keilholz, Emory University and Georgia Institute of Technology, United States
Publication history
- Preprint posted: August 12, 2022 (view preprint)
- Received: November 3, 2022
- Accepted: May 3, 2023
- Accepted Manuscript published: May 25, 2023 (version 1)
- Accepted Manuscript updated: May 26, 2023 (version 2)
- Version of Record published: May 30, 2023 (version 3)
Copyright
© 2023, Godbersen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 196
- Page views
-
- 55
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
One signature of the human brain is its ability to derive knowledge from language inputs, in addition to nonlinguistic sensory channels such as vision and touch. How does human language experience modulate the mechanism by which semantic knowledge is stored in the human brain? We investigated this question using a unique human model with varying amounts and qualities of early language exposure: early deaf adults who were born to hearing parents and had reduced early exposure and delayed acquisition of any natural human language (speech or sign), with early deaf adults who acquired sign language from birth as the control group that matches on nonlinguistic sensory experiences. Neural responses in a semantic judgment task with 90 written words that were familiar to both groups were measured using fMRI. The deaf group with reduced early language exposure, compared with the deaf control group, showed reduced semantic sensitivity, in both multivariate pattern (semantic structure encoding) and univariate (abstractness effect) analyses, in the left dorsal anterior temporal lobe (dATL). These results provide positive, causal evidence that language experience drives the neural semantic representation in the dATL, highlighting the roles of language in forming human neural semantic structures beyond nonverbal sensory experiences.
-
- Neuroscience
Across phyla, males often produce species-specific vocalizations to attract females. Although understanding the neural mechanisms underlying behavior has been challenging in vertebrates, we previously identified two anatomically distinct central pattern generators (CPGs) that drive the fast and slow clicks of male Xenopus laevis, using an ex vivo preparation that produces fictive vocalizations. Here, we extended this approach to four additional species, X. amieti, X. cliivi, X. petersii, and X. tropicalis, by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls are species-specific, the CPGs used to generate clicks are conserved across species. The fast CPGs, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among fast-click species, and slow CPGs are shared among slow-click species. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but not in slow-click species. Moreover, fast CPGs are not inherited by all species but monopolized by fast-click species. The results suggest that species-specific calls of the genus Xenopus have evolved by utilizing conserved slow and/or fast CPGs inherited by each species.