Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells

  1. Scott M Emrich
  2. Ryan E Yoast
  3. Xuexin Zhang
  4. Adam J Fike
  5. Yin-Hu Wang
  6. Kristen N Bricker
  7. Anthony Y Tao
  8. Ping Xin
  9. Vonn Walter
  10. Martin T Johnson
  11. Trayambak Pathak
  12. Adam C Straub
  13. Stefan Feske
  14. Ziaur SM Rahman
  15. Mohamed Trebak  Is a corresponding author
  1. Pennsylvania State University, United States
  2. New York University Langone Medical Center, United States
  3. University of Pittsburgh, United States

Abstract

The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and effector functions of B lymphocytes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Scott M Emrich

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  2. Ryan E Yoast

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  3. Xuexin Zhang

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  4. Adam J Fike

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  5. Yin-Hu Wang

    Department of Pathology, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  6. Kristen N Bricker

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8963-9780
  7. Anthony Y Tao

    Department of Pathology, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  8. Ping Xin

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  9. Vonn Walter

    Department of Public Health Sciences, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6114-6714
  10. Martin T Johnson

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  11. Trayambak Pathak

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  12. Adam C Straub

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    Adam C Straub, owns stock options and is a consultant for Creegh Pharmaceuticals..
  13. Stefan Feske

    4Department of Pathology, New York University Langone Medical Center, New York, United States
    Competing interests
    Stefan Feske, is scientific co-founder of Calcimedica..
  14. Ziaur SM Rahman

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-9681
  15. Mohamed Trebak

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    TREBAKM@PITT.EDU
    Competing interests
    Mohamed Trebak, Reviewing editor, eLife.Is a consultant for Seeker Biologics Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6759-864X

Funding

National Heart, Lung, and Blood Institute (R35-HL150778)

  • Mohamed Trebak

National Institute of Allergy and Infectious Diseases (R01-AI162971)

  • Ziaur SM Rahman

National Institute of Allergy and Infectious Diseases (R01-AI097302 and R01-AI130143)

  • Stefan Feske

National Institute of Allergy and Infectious Diseases (F30-AI164803-01)

  • Anthony Y Tao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Penn State University: Protocols #: 46290, 47477, and 47350

Copyright

© 2023, Emrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,617
    views
  • 282
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott M Emrich
  2. Ryan E Yoast
  3. Xuexin Zhang
  4. Adam J Fike
  5. Yin-Hu Wang
  6. Kristen N Bricker
  7. Anthony Y Tao
  8. Ping Xin
  9. Vonn Walter
  10. Martin T Johnson
  11. Trayambak Pathak
  12. Adam C Straub
  13. Stefan Feske
  14. Ziaur SM Rahman
  15. Mohamed Trebak
(2023)
Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells
eLife 12:e84708.
https://doi.org/10.7554/eLife.84708

Share this article

https://doi.org/10.7554/eLife.84708

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Silvia Galli, Marco Di Antonio
    Insight

    The buildup of knot-like RNA structures in brain cells may be the key to understanding how uncontrolled protein aggregation drives Alzheimer’s disease.