Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells

  1. Scott M Emrich
  2. Ryan E Yoast
  3. Xuexin Zhang
  4. Adam J Fike
  5. Yin-Hu Wang
  6. Kristen N Bricker
  7. Anthony Y Tao
  8. Ping Xin
  9. Vonn Walter
  10. Martin T Johnson
  11. Trayambak Pathak
  12. Adam C Straub
  13. Stefan Feske
  14. Ziaur SM Rahman
  15. Mohamed Trebak  Is a corresponding author
  1. Pennsylvania State University, United States
  2. New York University Langone Medical Center, United States
  3. University of Pittsburgh, United States

Abstract

The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and effector functions of B lymphocytes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Scott M Emrich

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  2. Ryan E Yoast

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  3. Xuexin Zhang

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  4. Adam J Fike

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  5. Yin-Hu Wang

    Department of Pathology, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  6. Kristen N Bricker

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8963-9780
  7. Anthony Y Tao

    Department of Pathology, New York University Langone Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  8. Ping Xin

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  9. Vonn Walter

    Department of Public Health Sciences, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6114-6714
  10. Martin T Johnson

    Department of Cellular and Molecular Physiology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
  11. Trayambak Pathak

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  12. Adam C Straub

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    Adam C Straub, owns stock options and is a consultant for Creegh Pharmaceuticals..
  13. Stefan Feske

    4Department of Pathology, New York University Langone Medical Center, New York, United States
    Competing interests
    Stefan Feske, is scientific co-founder of Calcimedica..
  14. Ziaur SM Rahman

    Department of Microbiology and Immunology, Pennsylvania State University, Hershey, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8431-9681
  15. Mohamed Trebak

    Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    TREBAKM@PITT.EDU
    Competing interests
    Mohamed Trebak, Reviewing editor, eLife.Is a consultant for Seeker Biologics Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6759-864X

Funding

National Heart, Lung, and Blood Institute (R35-HL150778)

  • Mohamed Trebak

National Institute of Allergy and Infectious Diseases (R01-AI162971)

  • Ziaur SM Rahman

National Institute of Allergy and Infectious Diseases (R01-AI097302 and R01-AI130143)

  • Stefan Feske

National Institute of Allergy and Infectious Diseases (F30-AI164803-01)

  • Anthony Y Tao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Penn State University: Protocols #: 46290, 47477, and 47350

Copyright

© 2023, Emrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,507
    views
  • 270
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott M Emrich
  2. Ryan E Yoast
  3. Xuexin Zhang
  4. Adam J Fike
  5. Yin-Hu Wang
  6. Kristen N Bricker
  7. Anthony Y Tao
  8. Ping Xin
  9. Vonn Walter
  10. Martin T Johnson
  11. Trayambak Pathak
  12. Adam C Straub
  13. Stefan Feske
  14. Ziaur SM Rahman
  15. Mohamed Trebak
(2023)
Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells
eLife 12:e84708.
https://doi.org/10.7554/eLife.84708

Share this article

https://doi.org/10.7554/eLife.84708

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.