Genetically engineered mesenchymal stem cells as a nitric oxide reservoir for acute kidney injury therapy

  1. Haoyan Huang
  2. Meng Qian
  3. Yue Liu
  4. Shang Chen
  5. Huifang Li
  6. Zhibo Han
  7. Zhong-chao Han
  8. Xiangmei Chen
  9. Qiang Zhao  Is a corresponding author
  10. Zongjin Li  Is a corresponding author
  1. Nankai University, China
  2. AmCellGene Co Ltd, China
  3. Chinese PLA General Hospital, China

Abstract

Nitric oxide (NO), as a gaseous therapeutic agent, shows great potential for the treatment of many kinds of diseases. Although various NO delivery systems have emerged, the immunogenicity and long-term toxicity of artificial carriers hinder the potential clinical translation of these gas therapeutics. Mesenchymal stem cells (MSCs), with the capacities of self-renewal, differentiation, and low immunogenicity, have been used as living carriers. However, MSCs as gaseous signaling molecule (GSM) carriers have not been reported. In this study, human MSCs were genetically modified to produce mutant β-galactosidase (β-GALH363A). Furthermore, a new NO prodrug, 6-methyl-galactose-benzyl-oxy NONOate (MGP), was designed. MGP can enter cells and selectively trigger NO release from genetically engineered MSCs (eMSCs) in the presence of β-GALH363A. Moreover, our results revealed that eMSCs can release NO when MGP is systemically administered in a mouse model of acute kidney injury (AKI), which can achieve NO release in a precise spatiotemporal manner and augment the therapeutic efficiency of MSCs. This eMSC and NO prodrug system provides a unique and tunable platform for GSM delivery and holds promise for regenerative therapy by enhancing the therapeutic efficiency of stem cells.

Data availability

All raw data for bulk RNA sequencing has been deposited in the NCBI Sequence Read Archive under accession code PRJNA910491 (https://www.ncbi.nlm.nih.gov/bioproject); Source data file has been provided for Figure 1- source data 1.

The following data sets were generated

Article and author information

Author details

  1. Haoyan Huang

    Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Meng Qian

    Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yue Liu

    Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shang Chen

    Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Huifang Li

    Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhibo Han

    AmCellGene Co Ltd, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhong-chao Han

    AmCellGene Co Ltd, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiangmei Chen

    State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Qiang Zhao

    Nankai University, Tianjin, China
    For correspondence
    qiangzhao@nankai.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Zongjin Li

    Nankai University, Tianjin, China
    For correspondence
    zongjinli@nankai.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4603-3743

Funding

National Key Research and Development Program of China (2017YFA0103200)

  • Zongjin Li

National Natural Science Foundation of China (81925021,U2004126)

  • Qiang Zhao
  • Zongjin Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the Nankai University Animal Care and Use Committee Guidelines (approval no. 2021-SYDWLL-000426).

Copyright

© 2023, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 667
    views
  • 147
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haoyan Huang
  2. Meng Qian
  3. Yue Liu
  4. Shang Chen
  5. Huifang Li
  6. Zhibo Han
  7. Zhong-chao Han
  8. Xiangmei Chen
  9. Qiang Zhao
  10. Zongjin Li
(2023)
Genetically engineered mesenchymal stem cells as a nitric oxide reservoir for acute kidney injury therapy
eLife 12:e84820.
https://doi.org/10.7554/eLife.84820

Share this article

https://doi.org/10.7554/eLife.84820

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Lina Antenucci, Salla Virtanen ... Perttu Permi
    Research Article

    Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.