High-throughput library transgenesis in Caenorhabditis elegans via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS)

  1. Zachary C Stevenson
  2. Megan J Moerdyk-Schauwecker
  3. Stephen A Banse
  4. Dhaval S Patel
  5. Hang Lu
  6. Patrick C Phillips  Is a corresponding author
  1. Institute of Ecology and Evolution, University of Oregon, United States
  2. School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, United States
  3. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, United States
5 figures, 2 tables and 8 additional files

Figures

Transformation compared to Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS).

For transformation, a large population of cells are individually transformed with a DNA library, resulting in a diverse population of individuals. TARDIS achieves a diversity of individuals by splitting transgenesis into two separate processes: (1) the introduction of a diverse library, which is formed into a TARDIS library array, passed down to future generations and thus replicated; and (2) an event that triggers the integration a sequence from the library at random, resulting in a diversity of integrated sequences.

Figure 2 with 1 supplement
Barcode landing pad and diverse donor library.

(A) Schematic design for the barcode landing pad and integration. A broken hygromycin resistance gene is targeted by Cas9, which repairs off the Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS) array, integrating a barcode and restoring the functionality of the gene. (B) The TARDIS multiplex library was created from a randomized oligo library, which underwent 10 cycles of PCR to make a dsDNA template. The barcode fragment was then added into a three fragment overlap PCR to add homology arms and make the final library for injection.

Figure 2—figure supplement 1
Schematic layout for the two separate PCR processes for identification of barcode counts in arrays (Amplicon One-Array) and integrants (Amplicon One-Integrant).
Figure 3 with 3 supplements
Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS) library arrays can contain large barcode diversity.

(A) Frequency distribution of 1319 unique barcodes in array 1 (PX816). (B) Frequency distribution of the 3001 unique barcode sequences in array 2 (PX817). (C) Sequence logo probabilities of the 15 base pair positions of the barcodes in the injection mix, array 1 and array 2.

Figure 3—figure supplement 1
Barcode frequency in injection mix.

Barcode frequencies for Injection mix used for arrays 1–3. There are approximately 1 million reads represented. In total, 797,353 unique sequences were identified. A few of these unique sequences were represented at a higher frequency with a count cutoff greater than 50.

Figure 3—figure supplement 2
Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS) array 3.

Two individual arrays were isolated from the same plate. Both show considerably less diversity than TARDIS arrays 1 and 2. Distribution of unique barcode frequencies, sequence logo base pair probability, and count cutoff for (A) TARDIS array 3 profile 1 and (B) TARDIS array 3 profile 2.

Figure 3—figure supplement 3
Determination of proper count cutoff for (A) Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS) array 1 and (B) TARDIS array 2.
Figure 4 with 1 supplement
Integration frequency from Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS) library array to F1.

(A) Frequency of integration from TARDIS library array to the F1, R ≈ 0.96, p≈5.7 × 10-154. Different colors represent four biological replicates. Line shading represents 95% confidence interval. (B) Sequence probabilities of PX786 compared to the F1 integrations (91 unique barcodes were identified in the array and 118 in the F1s, with a five read threshold).

Figure 4—figure supplement 1
F1 integration events followed a consistent pattern, with replicated outlier barcode sequences.

Generally, the same barcodes integrated at approximately the same frequency across the four replicates.

Figure 5 with 1 supplement
Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS) promoter library.

(A) Overview of the two split landing pads and their associated promoter insertion vectors. Both the selective marker and the fluorophore expression are restored upon correct integration. (B) Transcriptional reporters for nine genes were recovered from a single heatshock of a single TARDIS array line (PX819). Integration was into the single mScarlet-I/HygR landing pad. Main images show mScarlet-I expression for the indicated reporter while insets show polarized image of the same region. (C) Example simultaneous, dual integration from a single TARDIS array into the double landing pad strain with PEST. ceh-10p::mNeonGreen::PEST is false-colored green and ceh-40p::mScarlet-I::PEST is false-colored magenta. All scale bars represent 20 µm.

Figure 5—figure supplement 1
Transformation efficiency for promoter arrays.

(A) Promoters from seven array-bearing lines were amplified using universal primers and show distinct profiles. Note that not all promoters found in the arrays were detected in this screen. (B) Promoters contained in each array-bearing line as determined by promoter specific PCR (C) Line PX819 was heat-shocked to trigger integration and four hygromycin-resistant progeny were singled from each of the 59/60 plates with hygromycin-resistant individuals. Singled worms were screened by PCR, and select promoters were chosen for sequencing based on their size profile. PCR and sequencing result are shown for representative plates. *Due to their size of the egl-46 and nhr-67, promoters do not reliably amplify with the universal primers. Therefore, samples with no or weak amplification were rescreened with primers specific to these two promoters (not shown).

Tables

Table 1
Characteristics of injected promoters and presence in tested array line (PX819) and integrated lines derived from that array.
PromoterPromoter size (bp)Expected expression locationArrayIntegrated
aha-1330Neurons, hypodermis, intestine, pharynx (Jiang et al., 2001)YY
hlh-16514Head neurons (Bertrand et al., 2011)YN
ceh-40965Dopaminergic neurons (Sarov et al., 2012)YY
ceh-101172Neurons, seam cells (Reece-Hoyes et al., 2007)YY
ahr-11387ALM and RME neurons (Huang et al., 2004)YN
mdl-12000Neurons, body wall, pharynx (Reece-Hoyes et al., 2007)YY
egl-432001Neurons, gonad (Hwang et al., 2007)YN
ceh-202015Neurons, seam cells, vulva (Reece-Hoyes et al., 2007)YY
ceh-432096Neurons, anterior hypodermis (Reece-Hoyes et al., 2007)YY
daf-72524Nead neurons, coelemocytes, pharynx (Klabonski et al., 2016)YY
lin-112857Neurons, uterus, vulva, head muscle (Gupta et al., 2003)YY
egl-464477Neurons (Wu et al., 2001)NN
nhr-675545Neurons, excretory cell, rectal valve cell, vulva (Fernandes and Sternberg, 2007)YY
  1. Y, yes; N, no.

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Genetic reagent (Caenorhabditis elegans)aha-1pwormbase.orgWBGene00000095
Genetic reagent (C. elegans)hlh-16pwormbase.orgWBGene00001960
Genetic reagent (C. elegans)ceh-40pwormbase.orgWBGene00000461
Genetic reagent (C. elegans)ceh-10pwormbase.orgWBGene00000435
Genetic reagent (C. elegans)ahr-1pwormbase.orgWBGene00000096
Genetic reagent (C. elegans)mdl-1pwormbase.orgWBGene00003163
Genetic reagent (C. elegans)egl-43pwormbase.orgWBGene00001207
Genetic reagent (C. elegans)ceh-20pwormbase.orgWBGene00000443
Genetic reagent (C. elegans)ceh-43pwormbase.orgWBGene00000463
Genetic reagent (C. elegans)daf-7pwormbase.orgWBGene00000903
Genetic reagent (C. elegans)lin-11pwormbase.orgWBGene00003000
Genetic reagent (C. elegans)egl-46pwormbase.orgWBGene00001210
Genetic reagent (C. elegans)nhr-67pwormbase.orgWBGene00003657
Strain, strain background (C. elegans)N2Caenorhabditis Genetics Center
Strain, strain background (C. elegans)N2-PD1073doi:10.17912/micropub.biology.000518Available from the Caenorhabditis Intervention Testing Program- upon request (https://citp.squarespace.com/)-
Strain, strain background (C. elegans)PX740This paperN2-PD1073 fxIs47 [rsp-0p:: 5′ ΔHygR:: GCGAAGTGACGGTAGACCGT:: 3′ ΔHygR::unc-54 3′::loxP]
Strain, strain background (C. elegans)GT331This paperaSi9[lox2272 Cbr-unc-119(+) lox2272+loxP 3′3′ ΔHygR +3′ ΔmScarlet-I::PEST]; unc-119(ed3)
Strain, strain background (C. elegans)GT332This paperaSi10[lox2272 Cbr-unc-119(+) lox2272+loxP 3′ ΔHygR +3′ ΔmScarlet-I]; unc-119(ed3)
Strain, strain background (C. elegans)GT336This paperaSi12[lox2272 rps-0p::HygR+hsp−16.41p::Cre::tbb-2 3′UTR+sqt-1(e1350) lox2272+loxN 3′ ΔCbr-unc-119(+)::tjp2a_guide:: 3′ ΔmNeonGreen::PEST::egl-13nls::tbb-2 3′UTR] aSi9[lox2272 Cbr-unc-119(+) lox2272+loxP 3′ΔHygR::tjp2a guide::3′ΔmScarlet-I::PEST::egl-13nls::tbb-2 3′UTR] II; unc-119(ed3) III
Strain, strain background (C. elegans)GT337This paperaSi13[lox2272+loxN 3' ΔCbr-unc-119(+)+3' ΔmNeonGreen::PEST] aSi14[lox2272+loxP 3′ ΔHygR +3′ ΔmScarlet-I::PEST]; unc-119(ed3),
Strain, strain background (C. elegans)QL74Gift from QueeLim Ch’ngoxEx1578 [eft-3p::GFP+Cbr-unc-119(+)] 6x outcross EG4322
Strain, strain background (C. elegans)PX786This paperfxEx23 [TARDIS #5 5′ ΔHygR::Intron5'::Read1::NNNCNNTNTNANNNN::Read2::Intron3':: 3' ΔHygR (89 Unique Sequences) hsp-16.41p::piOptCas9::tbb-2 34' UTR+rsp-27p::NeoR::unc-54 3' UTR+U6p:: GCGAAGTGACGGTAGACCGT]; fxSi47[ rsp-0p:: 5' ΔHygR:: GCGAAGTGACGGTAGACCGT:: 3' ΔHygR::unc-54 3′::loxP]
Strain, strain background (C. elegans)PX816This paperfxEx25 [TARDIS #1 5' ΔHygR::Intron5'::Read1::NNNCNNTNTNANNNN::Read2::Intron3':: 3' ΔHygR (1,319 Unique Sequences) hsp-16.41p::piOptCas9::tbb-2 34' UTR+rsp-27p::NeoR::unc-54 3' UTR+U6p:: GCGAAGTGACGGTAGACCGT]; fxSi47[ rsp-0p:: 5' ΔHygR:: GCGAAGTGACGGTAGACCGT:: 3' ΔHygR::unc-54 3′::loxP]
Strain, strain background (C. elegans)PX817This paperfxEx26 [TARDIS #2 5' ΔHygR::Intron5'::Read1::NNNCNNTNTNANNNN::Read2::Intron3':: 3' ΔHygR (3,001 Unique Sequences) hsp-16.41p::piOptCas9::tbb-2 34' UTR+rsp-27p::NeoR::unc-54 3' UTR+U6p:: GCGAAGTGACGGTAGACCGT]; fxSi47[ rsp-0p:: 5' ΔHygR:: GCGAAGTGACGGTAGACCGT:: 3' ΔHygR::unc-54 3′::loxP]
Strain, strain background (C. elegans)PX818 profile 1This paperfxEx27 [TARDIS #3 5' ΔHygR::Intron5'::Read1::NNNCNNTNTNANNNN::Read2::Intron3':: 3' ΔHygR (91 Unique Sequences) hsp-16.41p::piOptCas9::tbb-2 34' UTR+rsp-27p::NeoR::unc-54 3' UTR+U6p:: GCGAAGTGACGGTAGACCGT]; fxSi47[ rsp-0p:: 5' ΔHygR:: GCGAAGTGACGGTAGACCGT:: 3' ΔHygR::unc-54 3′::loxP]
Strain, strain background (C. elegans)PX818 profile 2This paperfxEx28 [TARDIS #4 5' ΔHygR::Intron5'::Read1::NNNCNNTNTNANNNN::Read2::Intron3':: 3' ΔHygR (204 Unique Sequences) hsp-16.41p::piOptCas9::tbb-2 34' UTR+rsp-27p::NeoR::unc-54 3' UTR+U6p:: GCGAAGTGACGGTAGACCGT]; fxSi47[ rsp-0p:: 5' ΔHygR:: GCGAAGTGACGGTAGACCGT:: 3' ΔHygR′::unc-54 3′::loxP]
Strain, strain background (C. elegans)PX819This paperN2 fxEx24 [(rps-0p:: 5′ ∆HygR+loxP + aha-1p::SV40 NLS:: 5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + ahr-1p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + ceh-10-1p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + ceh-20p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + ceh-40p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: ∆HygR+loxP + ceh-43p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + daf-7p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: ∆HygR+loxP + egl-43p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + hlh-16p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + lin-11p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + mdl-1p::SV40 NLS::5′ ∆mScarlet-I) + (rps-0p:: 5′ ∆HygR+loxP + nhr-67p::SV40 NLS::5′ ∆mScarlet-I)+hsp−16.41p::piOptCas9::tbb-2 34′ UTR+prsp-27::NeoR::unc-54 3′ UTR]; aSi10[lox2272+Cbr-unc-119(+)+lox2272+loxP + 5′ ∆HygR::unc-54 3' UTR+5′ ∆mScarlet-I::egl-13 NLS::tbb-2 3' UTR, II:8420157]; unc-119(ed3) III
Strain, strain background (C. elegans)EG4322doi.org/10.1038ng.248; Caenorhabditis Genetics Center
Strain, strain background (Escherichia coli)PXKR1This paperNA22 transformed with pUC19
Recombinant DNA reagentPlasmid pDSP15This paper193853 (Addgene)5′ ΔHygR::loxP::MCS::5′ Δ mScarlet-I
Recombinant DNA reagentPlasmid pDSP16This paper193854 (Addgene)5′ ΔCbr-unc-119(+)::loxN::MCS::5′ Δ 5′mNeonGreen
Recombinant DNA reagentPlasmid pMS84This paper193852 (Addgene)U6p::GGACAGTCCTGCCGAGGTGG
Recombinant DNA reagentPlasmid pZCS36This paper193048 (Addgene)hsp16.41p::Cas9(dpiRNA)::tbb-2 ′3UTR
Recombinant DNA reagentPlasmid pZCS38This paper193049 (Addgene)rsp-27p::NeoR::unc-54 3′ UTR
Recombinant DNA reagentPlasmid pZCS41This paper193050 (Addgene)U6p::GCGAAGTGACGGTAGACCGT
Sequence-based reagentZCS422This paperDesign and construction of barcode donor library
Commercial assay or kitDNA Clean and ConcentratorZymo ResearchCat# D4004
Commercial assay or kitGenomic DNA Clean and ConcentratorZymo ResearchCat# D4011
Commercial assay or kitZymoclean Gel DNA Recovery KitZymo ResearchCat# D4008
Commercial assay or kitZyppy Plasmid Miniprep KitZymo ResearchCat# D4019
Software, algorithmCutadeptdoi.org/10.14806/ej.17.1.200Version 4.1
Software, algorithmAmpUMIdoi.org/10.1093/bioinformatics/bty264Version 1.2
Software, algorithmStarcodedoi.org/10.1093/bioinformatics/btv053Version 1.4
Software, algorithmGoogle colabcolab.research.google.com
Software, algorithmPython (version)Guido van Rossum, 1991Version 3.7.13
Software, algorithmJuypter Notebook (IPython)doi:10.3233/978-1-61499-649-1-87Version 7.9.0
Software, algorithmmatplotlibdoi:10.5281/zenodo.3898017Version 3.7.13
Software, algorithmFijiimagej.net/software/fiji/Version 2.9.011.53t
Chemical compound, drugG-418GoldBio (CAS number 108321-42-2)Cat# G-418-5
Chemical compound, drugHygromycin BGoldBio (CAS number 31282-04-9)Cat# H-270-10-1

Additional files

Supplementary file 1

Table of the plasmids used.

https://cdn.elifesciences.org/articles/84831/elife-84831-supp1-v1.xlsx
Supplementary file 2

Table of the primers used for cloning.

https://cdn.elifesciences.org/articles/84831/elife-84831-supp2-v1.xlsx
Supplementary file 3

Table of the primers used for strain confirmation by Sanger sequencing.

https://cdn.elifesciences.org/articles/84831/elife-84831-supp3-v1.xlsx
Supplementary file 4

Table of the primers and ultramer used to create the barcode donor homology.

https://cdn.elifesciences.org/articles/84831/elife-84831-supp4-v1.xlsx
Supplementary file 5

Table of the primers used for Illumina sequencing.

https://cdn.elifesciences.org/articles/84831/elife-84831-supp5-v1.xlsx
Supplementary file 6

Table of the primers used for promoter identification.

https://cdn.elifesciences.org/articles/84831/elife-84831-supp6-v1.xlsx
Supplementary file 7

Complete genotypes for the barcode TARDIS arrays presented in the study.

https://cdn.elifesciences.org/articles/84831/elife-84831-supp7-v1.docx
MDAR checklist
https://cdn.elifesciences.org/articles/84831/elife-84831-mdarchecklist1-v1.docx

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary C Stevenson
  2. Megan J Moerdyk-Schauwecker
  3. Stephen A Banse
  4. Dhaval S Patel
  5. Hang Lu
  6. Patrick C Phillips
(2023)
High-throughput library transgenesis in Caenorhabditis elegans via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS)
eLife 12:RP84831.
https://doi.org/10.7554/eLife.84831.3