Genome editing of an African elite rice variety confers resistance against endemic and emerging Xanthomonas oryzae pv. oryzae strains
Abstract
Bacterial leaf blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), threatens global food security and the livelihood of small-scale rice producers. Analyses of Xoo collections from Asia, Africa and the Americas demonstrated complete continental segregation, despite robust global rice trade. Here, we report unprecedented BB outbreaks in Tanzania. The causative strains, unlike endemic African Xoo, carry Asian-type TAL effectors targeting the sucrose transporter SWEET11a and iTALes suppressing Xa1. Phylogenomics clustered these strains with Xoo from Southern-China. African rice varieties do not carry effective resistance. To protect African rice production against this emerging threat, we developed a hybrid CRISPR-Cas9/Cpf1 system to edit all known TALe-binding elements in three SWEET promoters of the East African elite variety Komboka. The edited lines show broad-spectrum resistance against Asian and African strains of Xoo, including strains recently discovered in Tanzania. The strategy could help to protect global rice crops from BB pandemics.
Data availability
All data supporting the results are available in the main text or supplementary materials. All data that support the findings of this study were included in the manuscript; raw data are available at Dryad (https://doi.org/10.5061/dryad.xpnvx0kk3; Summary of raw data files deposited at dryad is provided in Source_data_overview deposited raw data @dryad). Sequencing data for strains from this study have been deposited in the NCBI Sequence Read Archive (SRA) database (Accession codes for iTz strains are provided in Supplementary File 2 - Tabs 1 and 2). Source data have deposited at Dryad. Materials will be made available under MTA.
-
Raw DataDryad Digital Repository, doi:10.5061/dryad.xpnvx0kk3.
Article and author information
Author details
Funding
Bill and Melinda Gates Foundation (OPP1155704)
- Wolf B Frommer
Alexander von Humboldt-Stiftung (Professorship)
- Wolf B Frommer
Deutsche Forschungsgemeinschaft (EXC-2048/1 - project ID 390686111)
- Wolf B Frommer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Schepler-Luu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,176
- views
-
- 354
- downloads
-
- 12
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis (Mtb) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR (virRmut) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb. We employ genetic, transcriptional, proteomics, ultrastructural, and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virRmut. Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.