Prefrontal cortex state representations shape human credit assignment

  1. Amrita Lamba
  2. Matthew R Nassar
  3. Oriel FeldmanHall  Is a corresponding author
  1. Brown University, United States

Abstract

People learn adaptively from feedback, but the rate of such learning differs drastically across individuals and contexts. Here we examine whether this variability reflects differences in what is learned. Leveraging a neurocomputational approach that merges fMRI and an iterative reward learning task, we link the specificity of credit assignment-how well people are able to appropriately attribute outcomes to their causes-to the precision of neural codes in the prefrontal cortex (PFC). Participants credit task-relevant cues more precisely in social compared to nonsocial contexts, a process that is mediated by high-fidelity (i.e., distinct and consistent) state representations in the PFC. Specifically, the medial PFC and orbitofrontal cortex work in concert to match the neural codes from feedback to those at choice, and the strength of these common neural codes predict credit assignment precision. Together this work provides a window into how neural representations drive adaptive learning.

Data availability

Behavioral data and analyzed neural data are available on github: https://github.com/amrita-lamba/eLife_prefrontal_credit_assignment. Model code and fMRI analysis scripts are also available on this repository.

The following data sets were generated

Article and author information

Author details

  1. Amrita Lamba

    Department of Cognitive Linguistic and Psychological Sc, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew R Nassar

    2Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Oriel FeldmanHall

    Department of Cognitive Linguistic and Psychological Sc, Brown University, Providence, United States
    For correspondence
    oriel.feldmanhall@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0726-3861

Funding

Brain and Behavior Research Foundation (26210)

  • Oriel FeldmanHall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Kahnt, National Institute on Drug Abuse Intramural Research Program, United States

Ethics

Human subjects: Our study protocol was approved by Brown University's Institutional Review Board (Protocol #1607001555) and all participants indicated informed consent for both behavioral and neuroimaging portions of the study.

Version history

  1. Preprint posted: August 18, 2022 (view preprint)
  2. Received: November 13, 2022
  3. Accepted: June 16, 2023
  4. Accepted Manuscript published: July 3, 2023 (version 1)
  5. Version of Record published: July 17, 2023 (version 2)

Copyright

© 2023, Lamba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,506
    views
  • 238
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amrita Lamba
  2. Matthew R Nassar
  3. Oriel FeldmanHall
(2023)
Prefrontal cortex state representations shape human credit assignment
eLife 12:e84888.
https://doi.org/10.7554/eLife.84888

Share this article

https://doi.org/10.7554/eLife.84888

Further reading

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.

    1. Neuroscience
    Zhaoran Zhang, Huijun Wang ... Kunlin Wei
    Research Article

    The sensorimotor system can recalibrate itself without our conscious awareness, a type of procedural learning whose computational mechanism remains undefined. Recent findings on implicit motor adaptation, such as over-learning from small perturbations and fast saturation for increasing perturbation size, challenge existing theories based on sensory errors. We argue that perceptual error, arising from the optimal combination of movement-related cues, is the primary driver of implicit adaptation. Central to our theory is the increasing sensory uncertainty of visual cues with increasing perturbations, which was validated through perceptual psychophysics (Experiment 1). Our theory predicts the learning dynamics of implicit adaptation across a spectrum of perturbation sizes on a trial-by-trial basis (Experiment 2). It explains proprioception changes and their relation to visual perturbation (Experiment 3). By modulating visual uncertainty in perturbation, we induced unique adaptation responses in line with our model predictions (Experiment 4). Overall, our perceptual error framework outperforms existing models based on sensory errors, suggesting that perceptual error in locating one’s effector, supported by Bayesian cue integration, underpins the sensorimotor system’s implicit adaptation.