Quantitative analyses of T cell motion in tissue reveals factors driving T cell search in tissues
Abstract
T cells are required to clear infection, moving first in lymph nodes to interact with antigen bearing dendritic cells leading to activation. T cells then move to sites of infection to find and clear infection. T cell motion plays a role in how quickly a T cell finds its target, from initial natiıve T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments might affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of motion from T cells moving in multiple tissues using tracks collected with microscopy from murine tissues. We quantitatively analyzed natiıve T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed, particularly if the previous speed is very slow (less than 2 μm/min) or very fast (greater than 8 μm/min) with the exception of T cells in the villi for speeds greater than 10 μm/min. Interestingly, we found that turning angles of T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this 'reversing' movement. Additionally, T cells in the lung showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. The combination of these differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.
Data availability
Datasets are available as Supplementary Materials under the Biorxiv preprint BIORXIV/2022/516891 https://www.biorxiv.org/content/10.1101/2022.11.17.516891v2.supplementary-material. The code used for analysis can be downloaded at: https://github.com/davytorres/T-cell-analysis-tool .
Article and author information
Author details
Funding
National Institutes of Health (P20GM103451)
- David J Torres
University of New Mexico (NCI P30CA118100)
- Paulus Mrass
National Institutes of Health (P20GM121176)
- Paulus Mrass
University of New Mexico (School of Medicine)
- Paulus Mrass
National Institutes of Health (1R01AI097202)
- Judy L Cannon
National Institutes of Health (P50 GM085273)
- Judy L Cannon
National Institutes of Health (5P20GM103452)
- Judy L Cannon
National Institutes of Health (P20GM121176)
- Judy L Cannon
National Institutes of Health (5 T32 AI007538-19)
- Janie Byrum
University of New Mexico (School of Medicine)
- Judy L Cannon
University of New Mexico (DARPA/AFRL FA8650-18-C-6898)
- Judy L Cannon
University of New Mexico (NCI P30CA118100)
- Judy L Cannon
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All work was done in accordance with approved protocols per IACUC institutional approvals, IACUC Animal approval #: 21-201165-HS
Copyright
© 2023, Torres et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,144
- views
-
- 158
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.
-
- Computational and Systems Biology
Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.