Model Organisms: The holy grail of longevity research
Aging is a major risk factor for numerous chronic diseases, such as dementia, metabolic syndromes, and cancers, (Hou et al., 2019; Kennedy et al., 2014; Niccoli and Partridge, 2012), and age-related declines in health are poised to become significant economic and clinical challenges (European Commission, 2014). As a consequence, researchers, governments and drug companies have been trying to identify how aging is influenced by lifestyle choices and by biological, environmental and socio-economic factors (Crane et al., 2022). A key challenge is to develop innovative approaches that can help us to better understand the biology of aging and to accurately quantify age-dependent changes in physiology and cognition. The latter is necessary to evaluate the costs and benefits of potential interventions. Now, in eLife, Anne Brunnet (Stanford University) and colleagues – including Andrew McKay, Emma Costa and Jingxun Chen as joint first authors – report a fresh dimension to this quest (McKay et al., 2022).
Finding appropriate animal models is crucial in biomedicine, but it is rare for a single species (such as mice) to have all the characteristics required and also capture all the aspects of a target species (such as humans). The observation that “all models are wrong, but some are useful” captures this concept succinctly (even if it was first made about statistical models, not animal models; Box, 1976). However, it is possible to overcome this limitation by having a diverse pool of animal models that can help uncover fundamentally conserved phenomena and fuel innovative thinking (Mathuru et al., 2020). This is particularly relevant for aging studies, where longevity can be affected by species-specific adaptations and dramatically divergent evolutionary trajectories.
McKay et al. showcase new technologies and resources for the African turquoise killifish, Nothobranchius furzeri (Figure 1A). Compared to other vertebrate model organisms, killifish have an extremely short life cycle, during which they go through all the stages of life – from a larva to a senile adult – within a few weeks (Harel et al., 2015; Reichard and Polačik, 2019; Terzibasi Tozzini and Cellerino, 2020; Valenzano et al., 2015).

Killifish as a model organism to study aging.
(A) Of the various model organisms used to study aging and longevity in vertebrates, killifish (left) have the shortest lifespans. Other model organisms used to study aging and longevity in vertebrates include (in order of increasing lifespan) mice, zebrafish, dogs, macaques, naked mole rats and humans. (B) In the wild, killifish produce desiccation-resistant eggs and can pause egg development if environmental conditions are unfavorable. Once development resumes, killifish complete their lifecycle within six months. McKay et al. demonstrate that a restricted diet can extend the lifespan of male killifish (DR males) by up to three months.
Image created with BioRender.com.
For the experiments, adult fish were housed in individual transparent tanks. McKay et al. designed an automated feeding system, which has several advantages over the conventional, manual handling systems: it is less invasive; it is more precise and flexible; and it can be deployed across a large number of individual tanks. It is also designed to be open-source, easily transferable, and built from only 25 widely available components.
In a proof-of-concept study, McKay et al. used their design to compare the impact of a favorable diet and a restricted diet on aging. Their results suggest that males (but not females) raised on a restricted diet live longer, and that this change is accompanied by changes in the transcriptional profiles of liver cells (Figure 1B). Sex-specific effects of diet have also been seen in mammals, which suggest that this phenomenon may be widespread among vertebrates. The sex-specific gene expression and their potential connection to lifespan differences raises many interesting questions for future research.
A critical factor in longevity studies is to study the impact of interventions on cognition. Towards this goal, McKay et al. included a red LED light in the design of their automated feeding system: this light switched on a few seconds before the fish were fed, so they can learn to associate the red light with food delivery. After a few repetitions, if the fish learned this association, they would react to the red light switching on as if they expected to be fed. This assay allowed McKay et al. to test the learning abilities and memory retention of the killifish in their home tanks, and how these were affected by age. Even though the design of the associative learning paradigm was simple, McKay et al. were able to demonstrate that killifish rapidly learned such associations in five to eight repetitions.
Overall, the study of McKay et al. opens up a number of exciting possibilities for future studies using killifish. For instance, experiments could focus on investigating how exactly dietary restriction, drug interventions, and sex-specific effects in gene expression intersect with cognitive fitness. The automated feeder should also be useful for studies looking at the effect of specific diet schedules, nutrients and circadian rhythms on longevity. Finally, as new technologies for killifish mature further (Platzer and Englert, 2016), comparative multi-species studies with other species – notably medaka and zebrafish – will become more realistic and offer the promise of even deeper insights into the biology of aging in vertebrates.
References
-
Science and statisticsJournal of the American Statistical Association 71:791–799.https://doi.org/10.1080/01621459.1976.10480949
-
Ageing as a risk factor for neurodegenerative diseaseNature Reviews. Neurology 15:565–581.https://doi.org/10.1038/s41582-019-0244-7
-
Why behavioral neuroscience still needs diversity?: A curious case of a persistent needNeuroscience and Biobehavioral Reviews 116:130–141.https://doi.org/10.1016/j.neubiorev.2020.06.021
-
Ageing as a risk factor for diseaseCurrent Biology 22:R741–R752.https://doi.org/10.1016/j.cub.2012.07.024
-
Nothobranchius furzeri: a model for aging research and moreTrends in Genetics 32:543–552.https://doi.org/10.1016/j.tig.2016.06.006
Article and author information
Author details
Publication history
- Version of Record published: December 23, 2022 (version 1)
Copyright
© 2022, Mathuru
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,221
- Page views
-
- 78
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Neuroscience
A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A hallmark of ALS/FTD pathology is the presence of dipeptide repeat (DPR) proteins, produced from both sense GGGGCC (poly-GA, poly-GP, poly-GR) and antisense CCCCGG (poly-PR, poly-PG, poly-PA) transcripts. Translation of sense DPRs, such as poly-GA and poly-GR, depends on non-canonical (non-AUG) initiation codons. Here, we provide evidence for canonical AUG-dependent translation of two antisense DPRs, poly-PR and poly-PG. A single AUG is required for synthesis of poly-PR, one of the most toxic DPRs. Unexpectedly, we found redundancy between three AUG codons necessary for poly-PG translation. Further, the eukaryotic translation initiation factor 2D (EIF2D), which was previously implicated in sense DPR synthesis, is not required for AUG-dependent poly-PR or poly-PG translation, suggesting that distinct translation initiation factors control DPR synthesis from sense and antisense transcripts. Our findings on DPR synthesis from the C9ORF72 locus may be broadly applicable to many other nucleotide repeat expansion disorders.
-
- Ecology
- Genetics and Genomics
Adulis, located on the Red Sea coast in present-day Eritrea, was a bustling trading centre between the first and seventh centuries CE. Several classical geographers--Agatharchides of Cnidus, Pliny the Elder, Strabo-noted the value of Adulis to Greco--Roman Egypt, particularly as an emporium for living animals, including baboons (Papio spp.). Though fragmentary, these accounts predict the Adulite origins of mummified baboons in Ptolemaic catacombs, while inviting questions on the geoprovenance of older (Late Period) baboons recovered from Gabbanat el-Qurud ('Valley of the Monkeys'), Egypt. Dated to ca. 800-540 BCE, these animals could extend the antiquity of Egyptian-Adulite trade by as much as five centuries. Previously, Dominy et al. (2020) used stable istope analysis to show that two New Kingdom specimens of P. hamadryas originate from the Horn of Africa. Here, we report the complete mitochondrial genomes from a mummified baboon from Gabbanat el-Qurud and 14 museum specimens with known provenance together with published georeferenced mitochondrial sequence data. Phylogenetic assignment connects the mummified baboon to modern populations of Papio hamadryas in Eritrea, Ethiopia, and eastern Sudan. This result, assuming geographical stability of phylogenetic clades, corroborates Greco-Roman historiographies by pointing toward present-day Eritrea, and by extension Adulis, as a source of baboons for Late Period Egyptians. It also establishes geographic continuity with baboons from the fabled Land of Punt (Dominy et al., 2020), giving weight to speculation that Punt and Adulis were essentially the same trading centres separated by a thousand years of history.