Abstract

COVID-19 causes immune perturbations which may persist long-term, and patients frequently report ongoing symptoms for months after recovery. We assessed immune activation at 3-12 months post hospital admission in 187 samples from 63 patients with mild, moderate or severe disease and investigated whether it associates with long COVID. At 3 months, patients with severe disease displayed persistent activation of CD4+ and CD8+ T-cells, based on expression of HLA-DR, CD38, Ki67 and granzyme B, and elevated plasma levels of IL-4, IL-7, IL-17 and TNF-α compared to mild and/or moderate patients. Plasma from severe patients at 3 months caused T-cells from healthy donors to upregulate IL-15Rα, suggesting that plasma factors in severe patients may increase T-cell responsiveness to IL-15-driven bystander activation. Patients with severe disease reported a higher number of long COVID symptoms which did not however, correlate with cellular immune activation/pro-inflammatory cytokines after adjusting for age, sex and disease severity. Our data suggests that long COVID and persistent immune activation may correlate independently with severe disease.

Data availability

All data generated or analysed during this study are included in the manuscript files or supplementary files. Raw file (FCS files) for all flow cytometry data have been deposited in the FlowRepository, the link for access to the data is provided in the Material and Methods, Flow cytometry data analysis section.The code script and data for the analysis in Figure 6 are publicly available here: https://github.com/gushamilton/discover_long_covid. The link is provided in the Material and Methods, statistical analysis section.

The following data sets were generated

Article and author information

Author details

  1. Marianna Santopaolo

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Michaela Gregorova

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1605-0558
  3. Fergus Hamilton

    Academic Respiratory Unit, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. David Arnold

    Academic Respiratory Unit, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Long

    Diabetes and Metabolism, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Aurora Lacey

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Alice Halliday

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Holly Baum

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-6446
  9. Kristy Hamilton

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Rachel Milligan

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Elizabeth Oliver

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1211-1942
  12. Olivia Pearce

    Diabetes and Metabolism, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Lea Knezevic

    Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Begonia Morales Aza

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Alice Milne

    Academic Respiratory Unit, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Emily Milodowski

    Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Eben Jones

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Rajeka Lazarus

    University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Anu Goenka

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Adam Finn

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  21. Nicholas Maskell

    Academic Respiratory Unit, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. Andrew D Davidson

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1136-4008
  23. Kathleen Gillespie

    Diabetes and Metabolism, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  24. Linda Wooldridge

    Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6213-347X
  25. Laura Rivino

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    For correspondence
    laura.rivino@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6213-9794

Funding

Wellcome Trust (Elizabeth Blackwell Institute (EBI) with funding from the University's alumni and friends)

  • Anu Goenka
  • Linda Wooldridge
  • Laura Rivino

Southmead Hospital Charity (DISCOVER)

  • Fergus Hamilton
  • David Arnold
  • Laura Rivino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Information regarding our ethics approval and consent process is provided in the Materials and Methods section and copied below.Patients hospitalized with COVID-19 ({greater than or equal to}18 years of age) were recruited between 30th March and 3rd June 2020 into the observational study DIagnostic and Severity markers of COVID-19 to Enable Rapid triage (DISCOVER), a single-centre prospective study based in Bristol (UK). Research Ethics Committee (REC) approval: REC:20/YH/1021. Survivors were invited at 3, 8 and 12 months post admission to attend outpatient follow up clinics for a systematic clinical assessment (Arnold et al 2020). For those patients attending a face-to-face follow-up, consent was taken to collect samples for research purposes (blood for PBMC isolation, plasma and serum). When available serum collected from patients at admission was made available to the research team.

Copyright

© 2023, Santopaolo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,944
    views
  • 447
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marianna Santopaolo
  2. Michaela Gregorova
  3. Fergus Hamilton
  4. David Arnold
  5. Anna Long
  6. Aurora Lacey
  7. Alice Halliday
  8. Holly Baum
  9. Kristy Hamilton
  10. Rachel Milligan
  11. Elizabeth Oliver
  12. Olivia Pearce
  13. Lea Knezevic
  14. Begonia Morales Aza
  15. Alice Milne
  16. Emily Milodowski
  17. Eben Jones
  18. Rajeka Lazarus
  19. Anu Goenka
  20. Adam Finn
  21. Nicholas Maskell
  22. Andrew D Davidson
  23. Kathleen Gillespie
  24. Linda Wooldridge
  25. Laura Rivino
(2023)
Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months
eLife 12:e85009.
https://doi.org/10.7554/eLife.85009

Share this article

https://doi.org/10.7554/eLife.85009

Further reading

    1. Immunology and Inflammation
    Somen K Mistri, Brianna M Hilton ... Jonathan E Boyson
    Research Article

    During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire in mice. SAP deficiency resulted in both a significant loss of an immature Gzma+Blk+Etv5+Tox2+ γδT17 precursor population and a significant increase in Cd4+Cd8+Rorc+Ptcra+Rag1+ thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data support a model in which SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.

    1. Immunology and Inflammation
    Jasmine Rowell, Ching-In Lau ... Tessa Crompton
    Research Article

    Here, we sequenced rearranged TCRβ and TCRα chain sequences in CD4+CD8+ double positive (DP), CD4+CD8- single positive (SP4) and CD4-CD8+ (SP8) thymocyte populations from the foetus and young adult mouse. We found that life-stage had a greater impact on TCRβ and TCRα gene segment usage than cell-type. Foetal repertoires showed bias towards 3’TRAV and 5’TRAJ rearrangements in all populations, whereas adult repertoires used more 5’TRAV gene segments, suggesting that progressive TCRα rearrangements occur less frequently in foetal DP cells. When we synchronised young adult DP thymocyte differentiation by hydrocortisone treatment the new recovering DP thymocyte population showed more foetal-like 3’TRAV and 5’TRAJ gene segment usage. In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire. The foetal TCRβ repertoire was less diverse, less evenly distributed, with fewer non-template insertions, and all foetal populations contained more clonotypic expansions than adult. The differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing αβT-cells with properties and functions that are distinct from adult T-cells: their repertoire is less governed by MHC-restriction, with preference for particular gene segment usage, less diverse with more clonotypic expansions, and more closely encoded by genomic sequence.