Eelbrain, a Python toolkit for time-continuous analysis with temporal response functions

  1. Christian Brodbeck  Is a corresponding author
  2. Proloy Das
  3. Marlies Gillis
  4. Joshua P Kulasingham
  5. Shohini Bhattasali
  6. Phoebe Gaston
  7. Philip Resnik
  8. Jonathan Z Simon
  1. University of Connecticut, United States
  2. Stanford University, United States
  3. KU Leuven, Belgium
  4. Linköping University, Sweden
  5. University of Toronto, Canada
  6. University of Maryland, College Park, United States

Abstract

Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: 1) Is there a significant neural representation corresponding to this predictor variable? And if so, 2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.

Data availability

The data analyzed here was originally released with DOI: 10.7302/Z29C6VNH and can be retrieved from https://deepblue.lib.umich.edu/data/concern/data_sets/bg257f92t. For the purpose of this tutorial, the data were restructured and rereleased with DOI: 10.13016/pulf-lndn at http://hdl.handle.net/1903/27591. The companion GitHub repository contains code and instructions for replicating all analyses presented in the paper (https://github.com/Eelbrain/Alice).

The following previously published data sets were used

Article and author information

Author details

  1. Christian Brodbeck

    University of Connecticut, Storrs, United States
    For correspondence
    christian.brodbeck@uconn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8380-639X
  2. Proloy Das

    Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8807-042X
  3. Marlies Gillis

    KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3967-2950
  4. Joshua P Kulasingham

    Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Shohini Bhattasali

    University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6767-6529
  6. Phoebe Gaston

    University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Philip Resnik

    University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonathan Z Simon

    University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0858-0698

Funding

National Science Foundation (BCS 1754284)

  • Christian Brodbeck

National Science Foundation (BCS 2043903)

  • Christian Brodbeck

National Science Foundation (IIS 2207770)

  • Christian Brodbeck

National Science Foundation (SMA 1734892)

  • Joshua P Kulasingham
  • Jonathan Z Simon

National Institutes of Health (R01 DC014085)

  • Joshua P Kulasingham
  • Jonathan Z Simon

National Institutes of Health (R01 DC019394)

  • Jonathan Z Simon

Fonds Wetenschappelijk Onderzoek (SB 1SA0620N)

  • Marlies Gillis

Office of Naval Research (MURI N00014-18-1-2670)

  • Shohini Bhattasali
  • Philip Resnik

National Institutes of Health (T32 DC017703)

  • Phoebe Gaston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Brodbeck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,708
    views
  • 328
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christian Brodbeck
  2. Proloy Das
  3. Marlies Gillis
  4. Joshua P Kulasingham
  5. Shohini Bhattasali
  6. Phoebe Gaston
  7. Philip Resnik
  8. Jonathan Z Simon
(2023)
Eelbrain, a Python toolkit for time-continuous analysis with temporal response functions
eLife 12:e85012.
https://doi.org/10.7554/eLife.85012

Share this article

https://doi.org/10.7554/eLife.85012

Further reading

    1. Neuroscience
    Yi-Yun Ho, Qiuwei Yang ... Melissa R Warden
    Research Article

    The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.