Distinct roles of forward and backward alpha-band waves in spatial visual attention

  1. Andrea Alamia  Is a corresponding author
  2. Lucie Terral
  3. Malo Renaud D'ambra
  4. Rufin VanRullen
  1. CNRS, UMR5549, France
  2. CerCo - CNRS, France

Abstract

Previous research has associated alpha-band [8-12Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N=16, two previously published datasets with N=16 and N=31). Participants were instructed to detect a brief target by covertly attending to the screen's left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with or without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.

Data availability

Three datasets have been analyzed in this study and all of them are available from the Open Science Framework (as specified in the 'Methods/Participants' section). Code to analyze the data is available here: https://github.com/artipago/Travelling-waves-EEG-2.0, as specified in the 'Methods/Statistical analysis' section

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Andrea Alamia

    Centre de Recherche Cerveau et Cognition, Faculté de Médecine de Purpan, CNRS, UMR5549, Toulouse, France
    For correspondence
    artipago@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9826-2161
  2. Lucie Terral

    CerCo - CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Malo Renaud D'ambra

    CerCo - CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Rufin VanRullen

    Centre de Recherche Cerveau et Cognition, Faculté de Médecine de Purpan, CNRS, UMR5549, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3611-7716

Funding

European Research Council (101075930)

  • Andrea Alamia

Agence Nationale de la Recherche (ANR-19-PI3A-0004)

  • Rufin VanRullen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonas Obleser, University of Lübeck, Germany

Ethics

Human subjects: This study adheres to the guidelines for research at the "Centre de Recherche Cerveau et Cognition," and the protocol was approved by the local ethical committee "Commité de protection des Personnes Sud Méditerranée 1" (ethics approval number N˚ 2019-A02641-56).

Version history

  1. Preprint posted: August 18, 2022 (view preprint)
  2. Received: November 18, 2022
  3. Accepted: March 5, 2023
  4. Accepted Manuscript published: March 6, 2023 (version 1)
  5. Version of Record published: March 29, 2023 (version 2)

Copyright

© 2023, Alamia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,035
    views
  • 337
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Alamia
  2. Lucie Terral
  3. Malo Renaud D'ambra
  4. Rufin VanRullen
(2023)
Distinct roles of forward and backward alpha-band waves in spatial visual attention
eLife 12:e85035.
https://doi.org/10.7554/eLife.85035

Share this article

https://doi.org/10.7554/eLife.85035

Further reading

    1. Neuroscience
    James Malkin, Cian O'Donnell ... Laurence Aitchison
    Research Article

    Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.

    1. Neuroscience
    Wenyu Tu, Samuel R Cramer, Nanyin Zhang
    Research Article

    Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by ‘electrophysiology-invisible’ signals. These findings offer a novel perspective on our understanding of RSN interpretation.