Ventral striatum dopamine release encodes unique properties of visual stimuli in mice

  1. L Sofia Gonzalez
  2. Austen A Fisher
  3. Shane P D'Souza
  4. Evelin M Cotella
  5. Richard A Lang
  6. J Elliott Robinson  Is a corresponding author
  1. Cincinnati Children's Hospital Medical Center, United States

Abstract

The mesolimbic dopamine system is an evolutionarily conserved set of brain circuits that plays a role in attention, appetitive behavior, and reward processing. In this circuitry, ascending dopaminergic projections from the ventral midbrain innervate targets throughout the limbic forebrain, such as the ventral striatum/nucleus accumbens (NAc). Dopaminergic signaling in the NAc has been widely studied for its role in behavioral reinforcement, reward prediction error encoding, and motivational salience. Less well characterized is the role of dopaminergic neurotransmission in the response to surprising or alerting sensory events. To address this, we used the genetically encoded dopamine sensor dLight1 and fiber photometry to explore the ability of striatal dopamine release to encode the properties of salient sensory stimuli in mice, such as threatening looming discs. Here, we report that lateral NAc (LNAc) dopamine release encodes the rate and magnitude of environmental luminance changes rather than visual stimulus threat level. This encoding is highly sensitive, as LNAc dopamine could be evoked by light intensities that were imperceptible to human experimenters. We also found that light-evoked dopamine responses are wavelength-dependent at low irradiances, independent of the circadian cycle, robust to previous exposure history, and involve multiple phototransduction pathways. Thus, we have further elaborated the mesolimbic dopamine system's ability to encode visual information in mice, which is likely relevant to a wide body of scientists employing light sources or optical methods in behavioral research involving rodents.

Data availability

Viral vector plasmids used in this study are available on Addgene. Codes used for fiber photometry signal extraction and analysis are available at https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-python/FibPhoEpocAveraging/. Codes used for visual stimulus generation are available at https://github.com/jelliottrobinson/Robinson_Lab. Source data is available in the provided Supplemental Data and Statistical Analysis file.

Article and author information

Author details

  1. L Sofia Gonzalez

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Austen A Fisher

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shane P D'Souza

    Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6344-1434
  4. Evelin M Cotella

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard A Lang

    Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. J Elliott Robinson

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    elliott.robinson@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9417-3938

Funding

Simons Foundation Autism Research Initiative (BTI Award 663007)

  • J Elliott Robinson

Gilbert Family Foundation (Team Science Award)

  • J Elliott Robinson

Cincinnati Children's Research Foundation (Trustee Award)

  • J Elliott Robinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal husbandry and experimental procedures involving animal subjects were conducted in compliance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and approved by the Institutional Animal Care and Use Committee (IACUC) and by the Department of Veterinary Services at Cincinnati Children's Hospital Medical Center (CCHMC) under IACUC protocol 2020-0058.

Copyright

© 2023, Gonzalez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,662
    views
  • 327
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. L Sofia Gonzalez
  2. Austen A Fisher
  3. Shane P D'Souza
  4. Evelin M Cotella
  5. Richard A Lang
  6. J Elliott Robinson
(2023)
Ventral striatum dopamine release encodes unique properties of visual stimuli in mice
eLife 12:e85064.
https://doi.org/10.7554/eLife.85064

Share this article

https://doi.org/10.7554/eLife.85064

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.