Binding and sequestration of poison frog alkaloids by a plasma globulin

  1. Aurora Alvarez-Buylla  Is a corresponding author
  2. Marie-Therese Fischer
  3. Maria Dolores Moya Garzon
  4. Alexandra E Rangel
  5. Elicio E Tapia
  6. Julia T Tanzo
  7. H Tom Soh
  8. Luis A Coloma
  9. Jonathan Z Long
  10. Lauren A O'Connell  Is a corresponding author
  1. Department of Biology, Stanford University, United States
  2. Sarafan ChEM-H, Stanford University, United States
  3. Wu Tsai Institute for Neuroscience, Stanford University, United States
  4. Department of Pathology, Stanford University, United States
  5. Wu Tsai Human Performance Alliance, Stanford University, United States
  6. Department of Radiology, Stanford University, United States
  7. Center for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Germany
  8. Department of Electrical Engineering, Stanford University, United States
  9. Chan Zuckerberg Biohub, United States
  10. Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Ecuador
  11. Stanford Diabetes Research Center, Stanford University, United States
6 figures, 1 table and 1 additional file

Figures

Figure 1 with 2 supplements
Alkaloid-like photocrosslinking probes show binding and competition in poison frog plasma.

(A) Structures of alkaloid-like photocrosslinking probe and alkaloids tested, with the functional group in blue, the diazirine group in green, and the terminal alkyne in yellow. In (B–E), the top images show the TAMRA signal, which visualizes photoprobe binding, and the bottom images show coomassie staining of the same gel to assess total protein concentration in each well. (B) Plasma from different species (Oophaga sylvatica – Os, Dendrobates tinctorius – Dt, Epipedobates tricolor – Et, Allobates femoralis – Af, Rhinella marina – Rm, and humans – Hs, from left to right) shows different plasma photoprobe-binding activity and competition. Orange lines on phylogeny indicate independent evolutionary origins of chemical defense in Dendrobatidae and Mantellidae, with the number representing the number of times the phenotype arose along that branch. (C) Oophaga sylvatica plasma shows crosslinking, and competition with pumiliotoxin (PTX), decahydroquinoline (DHQ), and epibatidine (epi), but not nicotine (nic). (D) Dendrobates tinctorius plasma shows crosslinking and competition with PTX, slight competition with DHQ and epi, and no competition with nic. (E) Epipedobates tricolor plasma shows crosslinking and competition with PTX and DHQ, but not with epi or nic.

Figure 1—figure supplement 1
O. sylvatica dose response of photoprobe competition.

Plasma from O. sylvatica shows crosslinking to the photoprobe, and competition by pumiliotoxin 251D (PTX) occurs when there is 10:1 PTX:photoprobe concentration in the reaction.

Figure 1—figure supplement 2
D. tinctorius dose response of photoprobe competition.

Plasma from D. tinctorius shows crosslinking to the photoprobe, and competition by pumiliotoxin (PTX) occurs when there is 10:1 PTX:photoprobe concentration in the reaction.

Figure 2 with 1 supplement
Proteomics identifies a serpinA1-like protein as the main pumiliotoxin (PTX)-binding protein in Oophaga sylvatica plasma.

(A) Streptavidin blot of the proteins pulled down from O. sylvatica plasma across the three conditions: no photoprobe, photoprobe, and photoprobe plus competitor PTX. (B) Quantitative proteomics output in terms of percent competition defined as 100% − average spectral counts in the photoprobe + PTX condition divided by average spectral counts in the photoprobe only condition. Average was taken across two replicates. SerpinA1-like protein and albumin are annotated. (C) The number of spectral counts across conditions for the serpinA1-like protein, each replicate is shown individually. (D) The number of spectral counts across conditions for the albumin protein, each replicate is shown individually.

Figure 2—figure supplement 1
Peptide coverage over alkaloid-binding globulin (ABG) protein sequence.

All unique peptides from one replicate of the proteomics were mapped onto the protein sequence of O. sylvatica ABG, showing that there were peptides covering the full length of the protein.

Figure 3 with 3 supplements
Predicted alkaloid-binding globulin (ABG) structure and binding pocket resembles that of other small molecule binding serpins.

(A) AlphaFold structure predicted with the protein sequence of the Oophaga sylvatica ABG, with color representing model confidence and predicted binding pocket based on molecular docking simulation indicated with a black box. (B) Crystal structure for rat SerpinA6/corticosteroid-binding globulin (CBG), with the cortisol molecule shown in orange (PDB# 2V95). (C) Crystal structure for tree frog Boana punctata biliverdin-binding serpin (BBS), with biliverdin shown in orange (PDB# 7RBW). (D) Close-up of predicted binding pocket of pumiliotoxin (PTX) in O. sylvatica ABG, with residues proximal to PTX highlighted in magenta. The structure of PTX is indicated on the top right. (E) Close-up of cortisol binding in CBG (PDB# 2V95), with proximal residues highlighted in magenta. Cortisol structure is displayed on the top right. (F) Close-up of biliverdin binding in BBS (PDB# 7RBW), with some proximal residues highlighted in magenta. Biliverdin structure is shown on the top right.

Figure 3—figure supplement 1
Structure of A1AT protein.

Crystal structure for human SerpinA1/alpha-1-antitrypsin (PDB# 1HP7) contains the structural elements of other serpin-binding pockets (black box), however is not documented to have small molecule binding capabilities. Black box shows close-up of A1AT (PDB# 1HP7), with pocket residues highlighted in magenta.

Figure 3—figure supplement 2
Structure and binding pocket of thyroxine-binding globulin (TBG) protein.

Crystal structure for human SerpinA7/TBG (PDB# 2RIW) binds thyroxine (orange) in the same structural pocket as other serpins. Black box shows close-up of thyroxine-binding pocket of TBG (PDB# 2RIW), with proximal residues highlighted in magenta. Thyroxine structure is displayed on the top right.

Figure 3—figure supplement 3
Alignment of binding pocket residues.

Alignment of proximal residues (within 5 angstroms of small molecule) across small molecule binding serpins OsABG, biliverdin-binding serpin (BBS, PDB# 7RBW), corticosteroid-binding globulin (CBG, PDB# 2V95), and thyroxine-binding globulin (TBG, PDB# 2RIW) shows that most residues that may be involved in coordinating small molecule binding are not conserved, despite the structural conservation of the binding pocket. Percentages indicate the total percent identity of the protein sequences, the small number above each residue indicates the position of that amino acid in the protein sequence. Only proximal residues are shown, blank spaces are not representative of any specific sequence or spacing.

Figure 4 with 3 supplements
Recombinant expression and binding pocket mutants confirm plasma-binding activity and binding pocket predictions.

(A) Photoprobe crosslinking and competition with different compounds of 10 μg recombinantly expressed and purified OsABG recapitulates the binding activity seen in the plasma (Figure 1C). (B) Photoprobe crosslinking with 20 μg recombinantly expressed Dendrobates tinctorius alkaloid-binding globulin (ABG) shows crosslinking, and competition with pumiliotoxin (PTX) and decahydroquinoline (DHQ). (C) Photoprobe crosslinking with 80 μg recombinantly expressed Epipedobates tricolor ABG shows crosslinking, and competition with PTX and DHQ. (D) Alignment of protein sequence of proteins homologous to OsABG across species shows conservation of certain amino acids. Coloring of amino acids is based on the RasMol ‘amino’ coloring scheme, which highlights amino acid properties. (E) Potential binding residues were identified from the molecular docking simulation. Five different mutants were made based on specific amino acids in the binding pocket, with either a combination of four different alanine substitutions (m1 – yellow and teal residues, and m2 – yellow and green residues) or a single substitutions at D383 (m3), Y36F (m4), or S374A (m5). P8TX is shown in magenta. Oxygen atoms on the molecules are highlighted in red, nitrogen in blue. (F) Quadruple binding pocket mutants (m1 and m2) lose binding activity of the photoprobe, single amino acid substitutions (m3, m4, and m5) show reduced photoprobe binding and retained competition with PTX.

Figure 4—figure supplement 1
Glycosylation of recombinant OsABG.

Purified O. sylvatica doublet collapses when treated with PNGase deglycosylation enzyme.

Figure 4—figure supplement 2
Dose response of crosslinking OsABG.

Purified O.sylvatica alkaloid-binding globulin (ABG) shows crosslinking to the photoprobe and competition by pumiliotoxin (PTX) when there is a 1:1 PTX:photoprobe concentration.

Figure 4—figure supplement 3
Recombinant expression and purification of alkaloid-binding globulin (ABG) proteins in insect cells.

HIS blot and coomassie of the recombinantly expressed and purified O. sylvatica alkaloid-binding globulin (OsABG) and binding pocket mutants show a clear doublet pattern in both reduced (R) and non-reduced (NR) conditions.

OsABG sequesters free pumiliotoxin (PTX) in solution.

(A) Microscale thermophoresis (MST) of labeled OsABG with PTX finds that binding is of higher affinity than that of OsABG mutant 3 (D383A) and bovine serum albumin (BSA). (B) A 3-kDA molecular weight cut off (MWCO) centrifuge filter was used to separate ‘free’ versus ‘bound’ alkaloids in solutions with and without OsABG present, to later be quantified with liquid chromatography–mass spectrometry (LC–MS). (C) The percent of ‘free’ PTX 251D (purple) dropped when OsABG was present, however the amount of ‘free’ nicotine (gray) remained unchanged by the presence of OsABG.

Figure 5—source data 1

Raw data for the microscale thermophoresis (MST) and liquid chromatography–mass spectrometry (LC–MS) data shown in Figure 5.

https://cdn.elifesciences.org/articles/85096/elife-85096-fig5-data1-v2.zip
Figure 6 with 3 supplements
OsABG is expressed in the liver and binds ecologically relevant alkaloids.

(A) Wild Oophaga sylvatica were collected across three locations in Ecuador, n = 10 per location. (B) The liver expression level of OsABG was higher than that of other members of the serpinA family found in the genome, and of albumin. (C) Dorsal skin alkaloids fell into nine different classes, with the size of the circle representing the averaged percent of total skin alkaloid load. (D) Photoprobe binding with recombinantly expressed OsABG was competed by pumiliotoxin (PTX), decahydroquinoline (DHQ), epi, a histrionicotoxin-like compound (HTX), and indolizidine ring without R groups (indol), and slightly by a mixture of skin toxins from the wild specimens (TM). Photoprobe binding was not competed by nicotine (nic) or cortisol (cort). (E) Custom anti-OsABG antibody staining (magenta) in the skin and intestines, with actin stain (blue) and 4',6-diamidino-2-phenylindole (DAPI, shown in white). (F) Pre-incubation of anti-OsABG with purified OsABG protein in the skin and intestines shows loss of OsABG staining, indicating specific staining activity. White bars represent 50 μm.

Figure 6—source data 1

Raw data for the gene expression, gels, and immunohistochemistry shown in Figure 6.

https://cdn.elifesciences.org/articles/85096/elife-85096-fig6-data1-v2.zip
Figure 6—figure supplement 1
OsABG expression in intestines, liver, and skin.

Comparison of mRNA expression levels across tissues found high expression in the liver, and low to no expression in the skin and intestines.

Figure 6—figure supplement 2
OsABG protein presence in intestines, liver, and skin.

Immunohistochemical staining of O. sylvatica intestines, liver, and skin with custom anti-OsABG primary antibody, anti-actin, and DAPI. Second row shows staining of O. sylvatica intestines, liver, and skin with custom anti-OsABG primary antibody pre-incubated with OsABG protein, anti-actin primary antibody, and DAPI stain. Third row shows negative control staining of O. sylvatica intestines, liver, and skin with no primary antibodies added.

Figure 6—figure supplement 3
Western blot of anti-OsABG protein.

Western blot using custom anti-OsABG antibody against purified OsABG protein, O. sylvatica plasma, intestines, liver, and skin. The second blot has the same conditions but the primary antibody was pre-incubated with purified OsABG protein prior to blotting, to test the specificity of the antibody.

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Oophaga sylvatica)OsABGThis paperGenBank: OQ032869Consensus sequence from
three individuals
Gene (Dendrobates tinctorius)DtABGThis paperGenBank: OQ032870Consensus sequence from
three individuals
Gene (Epipedobates tricolor)EtABGThis paperGenBank: OQ032871Consensus sequence from
three individuals
Strain, strain background (Escherichia coli)TOP10InvitrogenCat# C404010Chemically competent cells
Genetic reagent
(Oophaga sylvatica)
O. sylvatica genomeThis paperGenBank: JARQOD000000000Annotation available with
associated datadryad files
Genetic reagent
(Allobates femoralis)
A. femoralis genomeThis paperGenBank: JARQOC000000000Annotation available with
associated datadryad files
Genetic reagent
(Epipdobates tricolor)
E. tricolor transcriptomeThis paperAvailable with datadryad files
Genetic reagent (Dendrobates tinctorius)D. tinctorius transcriptomeAlvarez-Buylla et al., 2022PMID: 35275922
Genetic reagent
(Mantella aurantiaca)
M. aurantiaca transcriptomeThis paperAvailable with datadryad files
Cell line (Spodoptera frugiperda)Sf9 insect cell cultureKemp ProteinsProprietary insect cell
expression technology
Biological sample
(Oophaga sylvatica)
Captive-bred little devil poison frogsUnderstory Enterprises
Biological sample (Dendrobates tinctorius)Captive-bred dyeing poison frogsJosh’s Frogs
Biological sample (Epipedobates tricolor)Captive-bred phantasmal poison frogsJosh’s Frogs
Biological sample
(Allobates femoralis)
Captive-bred brilliant-thighed poison frogsUnderstory Enterprises
Biological sample
(Mantella aurantiaca)
Captive-bred golden
mantella
Josh’s Frogs
Biological sample
(Homo sapiens)
Human plasmaInnovative ResearchCat# IPLANAH
Biological sample
(Oophaga sylvatica)
Field-collected little
devil poison frogs
Moskowitz et al., 2022doi:10.1101/2022.06.14.495949Tissue from 30 individuals
AntibodyAnti-OsABG rabbit polyclonal antibodyThis paperGenerated by Pocono rabbit farm,
WB dilution 1:1000, IHC dilution 1:800
AntibodyAnti-actin mouse monoclonal antibodyAbcamCat# ab11003IHC dilution 1:800
AntibodyGoat monoclonal anti-rabbit
Alexa Fluor 568
InvitrogenCat# A-11011IHC dilution 1:400
AntibodyGoat monoclonal anti-mouse Alexa Fluor 488InvitrogenCat# A-11001IHC dilution 1:400
Recombinant
DNA reagent
pENTR plasmidInvitrogenCat# K240020D-TOPO cloning
Sequence-based
reagent
OsABG_fwdThis paperPCR primerCACCATGAAACTTTTCGTCTACCTGTGTTTCAGC
Sequence-based
reagent
OsABG_revThis paperPCR primerCTATTTTGTTGGGTCTACTATTCTTCCGCTG
Sequence-based
reagent
DtABG_fwdThis paperPCR primerCACCATGAAGCTTTTCGTCTTCCTATGTTTCAGCC
Sequence-based
reagent
DtABG_revThis paperPCR primerCTATTTTGTTGGGTTTATTATTTTTCCATTCAAAATATCG
Sequence-based
reagent
EtABG_fwdThis paperPCR primerCACCATGAAGCTTTTCATCTTCCTGTGTTTGAGCC
Sequence-based
reagent
EtABG_revThis paperPCR primerCTATTTTGTTGGGTCTATTATTCTTCCGGAGAAAAC
Peptide,
recombinant protein
OsABGThis paperGenBank: OQ032869Custom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
OsABG mutant 1This paperY36A + W276A + S374A + D383ACustom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
OsABG mutant 2This paperY36A + S268A + D273A + D383ACustom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
OsABG mutant 3This paperD383ACustom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
OsABG mutant 4This paperY36FCustom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
OsABG mutant 5This paperS374ACustom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
DtABGThis paperGenBank: OQ032870Custom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
EtABGThis paperGenBank: OQ032871Custom expression and purification
by Kemp Proteins in sf9 cell culture
Peptide,
recombinant protein
Bovine serum albumin (BSA)Sigma-AldrichCat# A2153-50G
Commercial assay or kitMonarch total RNA Miniprep KitNEBCat# T2010S
Commercial assay or kitSuperstrand III First-Strand Synthesis kitInvitrogenCat# 18080-400ligo(dT)20 primer used
Commercial assay or kitPhusion High Fidelity DNA polymeraseThermo ScientificCat# F-530
Commercial assay or kitNucleoSpin Gel and PCR cleanupTakara BioCat# 740609.50
Commercial assay or kitpENTR/D-TOPO kitInvitrogenCat# 45-0218
Commercial assay or kitMiniprep KitQIAGENCat# 27106X4
Commercial assay or kitSanger SequencingAzenta Life SciencesM13F and M13R primers used
Commercial assay or kitRed-NHS 2nd Generation Labeling KitNanotemperCat# MO-L011
Commercial assay or kitTapestation RNA screentape analysisAgilentCat# 5067–5576; Cat# 5067–5578;
Cat# 5067–5577
Commercial assay or kitQubit Broad Range RNA kitInvitrogenCat# Q10210
Commercial assay or kitNEB Directional RNA
sequencing Kit
NEBCat# E7765L
Commercial assay or kitZymo RiboFree TotalRNA
Library Prep Kit
Zymo ResearchCat# R3003-B
Commercial assay or kitTapestation D1000 screentape analysisAgilentCat# 5582; Cat# 5583
Commercial assay or kitQubit dsDNA high sensitivity kitInvitrogenCat# Q33231
Commercial assay or kitHorse-Radish Peroxidase (HRP) substrate kitBio-RadCat# 1721064
Chemical compound, drug‘PTX 251D; pumiliotoxin 251D; PTX’OtherPubchem_CID:6440480Custom-synthesized molecule
produced by PepTech (Burlington,
MA, USA)
Chemical compound, drug‘decahydroquinoline; DHQ’Sigma-AldrichCat# 125741
Chemical compound, drug‘epibatidine; epi’Sigma-AldrichCat# E1145
Chemical compound, drug‘histrionicotoxin-like compound; HTX’Sigma-AldrichCat# ENAH2C55884A-50MG
Chemical compound, drug‘indolizidine; indol’Sigma-AldrichCat# ATE24584802-100MG
Chemical compound, drug‘nicotine; nic’Sigma-AldrichCat# N3876-100ML
Chemical compound, drug‘cortisol; cort’Sigma-AldrichCat# H0888-1G
Chemical compound, drug‘photoprobe, PB’EnamineCat# Z2866906198
Chemical compound, drugTBTAFisherCat# H66485-03
Chemical compound, drugCopper (II) sulfateFisherCat# BP346-500
Chemical compound, drugTris (2-carboxyethyl) phosphine hydrochlorideFisherCat# J60316-06
Chemical compound, drugTAMRA-N3FisherCat# T10182
Chemical compound, drugInstantBlueAbcamCat# ISB1L
Chemical compound, drugBiotin-N3Click Chemistry ToolsCat# 1265
Chemical compound, drugTrizolThermo FisherCat# 15596018
Chemical compound, drugTissue-Tek OCTSakura FinetekCat# 4583
Chemical compound, drugFluoShield aqueous mounting media containing DAPIAbcamCat# ab104139
Software, algorithmByronicProtein Metricsv4.1.5
Software, algorithmMAFFT nucleotide sequence alignmentBenchling
Software, algorithmClustal Omega AA sequence alignmentBenchling
Software, algorithmAlphaFoldJumper et al., 2021bPMID: 34265844Through google collab notebook:
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
Software, algorithmUCSF ChimeraPettersen et al., 2004PMID: 15264254
Software, algorithmAutodock VinaEberhardt et al., 2021PMID: 34278794v1.2.0
Software, algorithmGraphPad PrismGraphPad Software
Software, algorithmGNPS mass spec
deconvolution + identification
Wang et al., 2016PMID: 27504778
Software, algorithmRCRANv4.0.4
Software, algorithmTrim-galore!Martin, 2011doi:https://doi.org/10.14806/ej.17.1.200trim_galore --paired --phred33
--length 36 -q 30 --stringency 1 -e 0.001
Software, algorithmKallistoBray et al., 2016PMID: 27043002
Software, algorithmClustalWThompson et al., 1994PMID: 7984417
OtherNupage 4–12% Bis-Tris protein gelInvitrogenCat# NP0323BOXPre-cast protein gels
Other3 kDa Amicon MWCO centrifuge filterMillipore-SigmaCat# UFC800324Centrifugal molecular weight
cutoff filters
OtherMonolith Premium CapillariesNanotemperCat# MO-K025Glass capillaries for microscale
thermophoresis measurements
OtherEclipse Plus C18 columnAgilentCat# 959961-902Chromatographic column for
LC–MS/MS
OtherPTFE syringe filterThermo ScientificCat# 44504-NPConsumable to filter samples
prior to GC–MS analysis
OtherGlass vials with
PTFE-lined caps
FisherCat# 60940A-2Consumable to store samples
prior to GC–MS analysis
OtherSuperfrost SlidesVWRCat# 48311-703Slides used for IHC staining
OtherHydrophilic PAP PenVector laboratoriesCat# H-4000Hydrophilic barrier pen used in
IHC staining protocol

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aurora Alvarez-Buylla
  2. Marie-Therese Fischer
  3. Maria Dolores Moya Garzon
  4. Alexandra E Rangel
  5. Elicio E Tapia
  6. Julia T Tanzo
  7. H Tom Soh
  8. Luis A Coloma
  9. Jonathan Z Long
  10. Lauren A O'Connell
(2023)
Binding and sequestration of poison frog alkaloids by a plasma globulin
eLife 12:e85096.
https://doi.org/10.7554/eLife.85096