Unprecedented yet gradual nature of first millennium CE intercontinental crop plant dispersal revealed in ancient Negev desert refuse

  1. Daniel Fuks  Is a corresponding author
  2. Yoel Melamed
  3. Dafna Langgut
  4. Tali Erickson-Gini
  5. Yotam Tepper
  6. Guy Bar-Oz  Is a corresponding author
  7. Ehud Weiss  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Bar-Ilan University, Israel
  3. Tel Aviv University, Israel
  4. Israel Antiquities Authority, Israel
  5. University of Haifa, Israel

Abstract

Global agro-biodiversity has resulted from processes of plant migration and agricultural adoption. Although critically affecting current diversity, crop diffusion from Classical antiquity to the Middle Ages is poorly researched, overshadowed by studies on that of prehistoric periods. A new archaeobotanical dataset from three Negev Highland desert sites demonstrates the first millennium CE&'s significance for long-term agricultural change in southwest Asia. This enables evaluation of the 'Islamic Green Revolution' (IGR) thesis compared to 'Roman Agricultural Diffusion' (RAD), and both versus crop diffusion during and since the Neolithic. Among the finds, some of the earliest aubergine (Solanum melongena) seeds in the Levant represent the proposed IGR. Several other identified economic plants, including two unprecedented in Levantine archaeobotany-jujube (Ziziphus jujuba/mauritiana) and white lupine (Lupinus albus)-implicate RAD as the greater force for crop migrations. Altogether the evidence supports a gradualist model for Holocene-wide crop diffusion, within which the first millennium CE contributed more to global agricultural diversity than any earlier period.

Data availability

Only identified plant taxa are reported in the results of this study and all relevant data are included in the manuscript and supplementary materials. Source data may be found in Table 4-Source data 1-3.

Article and author information

Author details

  1. Daniel Fuks

    Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    df427@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4686-6128
  2. Yoel Melamed

    Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0952-708X
  3. Dafna Langgut

    Laboratory of Archaeobotany and Ancient Environments, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Tali Erickson-Gini

    Southern Region, Israel Antiquities Authority, Omer, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Yotam Tepper

    Central Region, Israel Antiquities Authority, Shoham, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Guy Bar-Oz

    School of Archaeology and Maritime Cultures, University of Haifa, Haifa, Israel
    For correspondence
    guybar@research.haifa.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1009-5619
  7. Ehud Weiss

    Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat Gan, Israel
    For correspondence
    ehud.weiss@biu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9730-4726

Funding

Bar-Ilan University

  • Daniel Fuks

Israel Council for Higher Education

  • Daniel Fuks

Molcho fund

  • Daniel Fuks

Horizon 2020 Framework Programme

  • Guy Bar-Oz

Israel Science Foundation

  • Guy Bar-Oz

Horizon 2020 Framework Programme

  • Daniel Fuks

British Academy

  • Daniel Fuks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Fuks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 601
    views
  • 108
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Fuks
  2. Yoel Melamed
  3. Dafna Langgut
  4. Tali Erickson-Gini
  5. Yotam Tepper
  6. Guy Bar-Oz
  7. Ehud Weiss
(2023)
Unprecedented yet gradual nature of first millennium CE intercontinental crop plant dispersal revealed in ancient Negev desert refuse
eLife 12:e85118.
https://doi.org/10.7554/eLife.85118

Share this article

https://doi.org/10.7554/eLife.85118

Further reading

    1. Ecology
    Laura Fargeot, Camille Poesy ... Blanchet Simon
    Research Article

    Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels – primary producers, primary consumers, and secondary consumers – in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity – gauged within three pivotal species – within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.