Unprecedented yet gradual nature of first millennium CE intercontinental crop plant dispersal revealed in ancient Negev desert refuse

  1. Daniel Fuks  Is a corresponding author
  2. Yoel Melamed
  3. Dafna Langgut
  4. Tali Erickson-Gini
  5. Yotam Tepper
  6. Guy Bar-Oz  Is a corresponding author
  7. Ehud Weiss  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Bar-Ilan University, Israel
  3. Tel Aviv University, Israel
  4. Israel Antiquities Authority, Israel
  5. University of Haifa, Israel

Abstract

Global agro-biodiversity has resulted from processes of plant migration and agricultural adoption. Although critically affecting current diversity, crop diffusion from Classical antiquity to the Middle Ages is poorly researched, overshadowed by studies on that of prehistoric periods. A new archaeobotanical dataset from three Negev Highland desert sites demonstrates the first millennium CE&'s significance for long-term agricultural change in southwest Asia. This enables evaluation of the 'Islamic Green Revolution' (IGR) thesis compared to 'Roman Agricultural Diffusion' (RAD), and both versus crop diffusion during and since the Neolithic. Among the finds, some of the earliest aubergine (Solanum melongena) seeds in the Levant represent the proposed IGR. Several other identified economic plants, including two unprecedented in Levantine archaeobotany-jujube (Ziziphus jujuba/mauritiana) and white lupine (Lupinus albus)-implicate RAD as the greater force for crop migrations. Altogether the evidence supports a gradualist model for Holocene-wide crop diffusion, within which the first millennium CE contributed more to global agricultural diversity than any earlier period.

Data availability

Only identified plant taxa are reported in the results of this study and all relevant data are included in the manuscript and supplementary materials. Source data may be found in Table 4-Source data 1-3.

Article and author information

Author details

  1. Daniel Fuks

    Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    df427@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4686-6128
  2. Yoel Melamed

    Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0952-708X
  3. Dafna Langgut

    Laboratory of Archaeobotany and Ancient Environments, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Tali Erickson-Gini

    Southern Region, Israel Antiquities Authority, Omer, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Yotam Tepper

    Central Region, Israel Antiquities Authority, Shoham, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Guy Bar-Oz

    School of Archaeology and Maritime Cultures, University of Haifa, Haifa, Israel
    For correspondence
    guybar@research.haifa.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1009-5619
  7. Ehud Weiss

    Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat Gan, Israel
    For correspondence
    ehud.weiss@biu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9730-4726

Funding

Bar-Ilan University

  • Daniel Fuks

Israel Council for Higher Education

  • Daniel Fuks

Molcho fund

  • Daniel Fuks

Horizon 2020 Framework Programme

  • Guy Bar-Oz

Israel Science Foundation

  • Guy Bar-Oz

Horizon 2020 Framework Programme

  • Daniel Fuks

British Academy

  • Daniel Fuks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffrey Ross-Ibarra, University of California, Davis, United States

Version history

  1. Received: November 23, 2022
  2. Preprint posted: December 2, 2022 (view preprint)
  3. Accepted: November 22, 2023
  4. Accepted Manuscript published: November 27, 2023 (version 1)
  5. Version of Record published: February 6, 2024 (version 2)

Copyright

© 2023, Fuks et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 432
    views
  • 82
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Fuks
  2. Yoel Melamed
  3. Dafna Langgut
  4. Tali Erickson-Gini
  5. Yotam Tepper
  6. Guy Bar-Oz
  7. Ehud Weiss
(2023)
Unprecedented yet gradual nature of first millennium CE intercontinental crop plant dispersal revealed in ancient Negev desert refuse
eLife 12:e85118.
https://doi.org/10.7554/eLife.85118

Share this article

https://doi.org/10.7554/eLife.85118

Further reading

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.

    1. Ecology
    Lan Pang, Gangqi Fang ... Jianhua Huang
    Research Article

    The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell—teratocytes—that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.