Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes

  1. Sophie Aimon  Is a corresponding author
  2. Karen Y Cheng
  3. Julijana Gjorgjieva
  4. Ilona C Grunwald Kadow  Is a corresponding author
  1. Max Planck Institute for Biological Cybernetics, Germany
  2. University of Bonn, Germany
  3. Technical University of Munich, Germany

Abstract

Movement-correlated brain activity has been found across species and brain regions. Here, we used fast whole-brain lightfield imaging in adult Drosophila to investigate the relationship between walk and brain-wide neuronal activity. We observed a global change in activity that tightly correlated with spontaneous bouts of walk. While imaging specific sets of excitatory, inhibitory, and neuromodulatory neurons highlighted their joint contribution, spatial heterogeneity in walk- and turning-induced activity allowed parsing unique responses from subregions and sometimes individual candidate neurons. For example, previously uncharacterized serotonergic neurons were inhibited during walk. While activity onset in some areas preceded walk onset exclusively in spontaneously walking animals, spontaneous and forced walk elicited similar activity in most brain regions. These data suggest a major contribution of walk and walk-related sensory or proprioceptive information to global activity of all major neuronal classes.

Data availability

Time series of regional data are available on Dryad https://doi.org/10.5061/dryad.3bk3j9kpb, and small datasets of processed data used for generating figures are on github: https://github.com/sophie63/Aimon2022. Code to analyze the data is available on https://github.com/sophie63/Aimon2022 and https://github.com/sophie63/FlyLFM.Original data is very large (several tens of TB) and is available upon request to Ilona.grunwald@uni-bonn.de.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sophie Aimon

    Kavli Institute for Brain and Mind, Max Planck Institute for Biological Cybernetics, tuebingen, Germany
    For correspondence
    aimon.sophie@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0990-0342
  2. Karen Y Cheng

    Institute of Physiology II, University of Bonn, Bonn, Germany
    Competing interests
    No competing interests declared.
  3. Julijana Gjorgjieva

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7118-4079
  4. Ilona C Grunwald Kadow

    Institute of Physiology II, University of Bonn, Bonn, Germany
    For correspondence
    ilona.grunwald@ukbonn.de
    Competing interests
    Ilona C Grunwald Kadow, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9085-4274

Funding

European Research Council (ERCStG FlyContext)

  • Ilona C Grunwald Kadow

European Research Council (ERCStG NeuroDevo)

  • Julijana Gjorgjieva

Simons Foundation (Aimon - 414701)

  • Sophie Aimon

iiBehave network grant by the Ministry of Culture and Science of the State of North Rhine-Westphalia

  • Ilona C Grunwald Kadow

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Aimon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,227
    views
  • 262
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie Aimon
  2. Karen Y Cheng
  3. Julijana Gjorgjieva
  4. Ilona C Grunwald Kadow
(2023)
Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes
eLife 12:e85202.
https://doi.org/10.7554/eLife.85202

Share this article

https://doi.org/10.7554/eLife.85202

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions - the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) - while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal's choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally-inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article Updated

    Most nervous systems combine both transmitter-mediated and direct cell–cell communication, known as ‘chemical’ and ‘electrical’ synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a ‘gap junction’ (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact’s surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.