Organelle proteomic profiling reveals lysosomal heterogeneity in association with longevity

  1. Yong Yu  Is a corresponding author
  2. Shihong M Gao
  3. Youchen Guan
  4. Pei-Wen Hu
  5. Qinghao Zhang
  6. Jiaming Liu
  7. Bentian Jing
  8. Qian Zhao
  9. David M Sabatini
  10. Monther Abu-Remaileh
  11. Sung Yun Jung
  12. Meng C Wang  Is a corresponding author
  1. Xiamen University, China
  2. Baylor College of Medicine, HHMI, United States
  3. Baylor College of Medicine, United States
  4. Independent, United States
  5. Stanford University, United States

Abstract

Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins associated with the lysosome mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked to longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using deep proteomic profiling, we systemically profiled lysosome-associated proteins linked with four different longevity mechanisms. We discovered the lysosomal recruitment of AMPK and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we further elucidated lysosomal heterogeneity across tissues as well as the increased enrichment of the Ragulator complex on Cystinosin positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity across multiple scales and provides resources for understanding the contribution of lysosomal protein dynamics to signal transduction, organelle crosstalk and organism longevity.

Data availability

The mass spectrometry data for protein identification have been deposited via the MASSIVE repository (MSV000090909) to the Proteome X change Consortium (http://proteomecentral.proteomexchange.org) with the dataset identifier PXD038865.Analysis code for Figure 6D, 6F and Figure 6-figure supplement 1 is included in the Supplementary code.

The following data sets were generated

Article and author information

Author details

  1. Yong Yu

    State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
    For correspondence
    yuy@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9821-9726
  2. Shihong M Gao

    Developmental Biology Graduate Program, Baylor College of Medicine, HHMI, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Youchen Guan

    Molecular and Cellular Biology Graduate Program, Baylor College of Medicine, HHMI, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pei-Wen Hu

    Huffington Center on Aging, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qinghao Zhang

    Huffington Center on Aging, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiaming Liu

    State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Bentian Jing

    State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Qian Zhao

    Huffington Center on Aging, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David M Sabatini

    Independent, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Monther Abu-Remaileh

    Department of Chemical Engineering and Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sung Yun Jung

    Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Meng C Wang

    Huffington Center on Aging, Baylor College of Medicine, HHMI, Houston, United States
    For correspondence
    wmeng@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5898-6007

Funding

Howard Hughes Medical Institute

  • Meng C Wang

National Natural Science Foundation of China (32071146)

  • Yong Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kang Shen, Stanford University, United States

Version history

  1. Preprint posted: October 17, 2022 (view preprint)
  2. Received: November 28, 2022
  3. Accepted: January 18, 2024
  4. Accepted Manuscript published: January 19, 2024 (version 1)
  5. Version of Record published: February 19, 2024 (version 2)

Copyright

© 2024, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,099
    views
  • 625
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yong Yu
  2. Shihong M Gao
  3. Youchen Guan
  4. Pei-Wen Hu
  5. Qinghao Zhang
  6. Jiaming Liu
  7. Bentian Jing
  8. Qian Zhao
  9. David M Sabatini
  10. Monther Abu-Remaileh
  11. Sung Yun Jung
  12. Meng C Wang
(2024)
Organelle proteomic profiling reveals lysosomal heterogeneity in association with longevity
eLife 13:e85214.
https://doi.org/10.7554/eLife.85214

Share this article

https://doi.org/10.7554/eLife.85214

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.