Myristoyl's dual role in allosterically regulating and localizing Abl kinase

  1. Svenja de Buhr
  2. Frauke Gräter  Is a corresponding author
  1. Heidelberg Institute for Theoretical Studies, Germany

Abstract

c-Abl kinase, a key signalling hub in many biological processes ranging from cell development to proliferation, is tightly regulated by two inhibitory Src homology domains. An N-terminal myristoyl-modification can bind to a hydrophobic pocket in the kinase C-lobe, which stabilizes the auto-inhibitory assembly. Activation is triggered by myristoyl release. We used molecular dynamics simulations to show how both myristoyl and the Src homology domains are required to impose the full inhibitory effect on the kinase domain, and reveal the allosteric transmission pathway at residue-level resolution. Importantly, we find myristoyl insertion into a membrane to thermodynamically compete with binding to c-Abl. Myristoyl thus not only localizes the protein to the cellular membrane, but membrane attachment at the same time enhances activation of c-Abl by stabilizing its pre-activated state. Our data put forward a model in which lipidation tightly couples kinase localization and regulation, a scheme that currently appears to be unique for this non-receptor tyrosine kinase.

Data availability

Source data for all figures has been deposited on the Dryad Digital Repository under the DOI 10.5061/dryad.9cnp5hqnx

The following data sets were generated

Article and author information

Author details

  1. Svenja de Buhr

    Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5368-3816
  2. Frauke Gräter

    Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
    For correspondence
    Frauke.Graeter@h-its.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2891-3381

Funding

Deutsche Forschungsgemeinschaft (2082/1 - 390761711)

  • Svenja de Buhr
  • Frauke Gräter

Klaus Tschira Foundation

  • Svenja de Buhr
  • Frauke Gräter

bwHPC

  • Svenja de Buhr
  • Frauke Gräter

Deutsche Forschungsgemeinschaft (INST 35/1134-1 FUGG)

  • Svenja de Buhr
  • Frauke Gräter

Carl Zeiss Foundation

  • Svenja de Buhr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, de Buhr & Gräter

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 693
    views
  • 113
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Svenja de Buhr
  2. Frauke Gräter
(2023)
Myristoyl's dual role in allosterically regulating and localizing Abl kinase
eLife 12:e85216.
https://doi.org/10.7554/eLife.85216

Share this article

https://doi.org/10.7554/eLife.85216