Characterization of caffeine response regulatory variants in vascular endothelial cells

  1. Carly Boye
  2. Cynthia A Kalita
  3. Anthony S Findley
  4. Adnan Alazizi
  5. Julong Wei
  6. Xiaoquan Wen
  7. Roger Pique-Regi
  8. Francesca Luca  Is a corresponding author
  1. Wayne State University, United States
  2. University of Michigan-Ann Arbor, United States

Abstract

Genetic variants in gene regulatory sequences can modify gene expression and mediate the molecular response to environmental stimuli. In addition, genotype-environment interactions (GxE) contribute to complex traits such as cardiovascular disease. Caffeine is the most widely consumed stimulant and is known to produce a vascular response. To investigate GxE for caffeine, we treated vascular endothelial cells with caffeine and used a massively parallel reporter assay to measure allelic effects on gene regulation for over 43,000 genetic variants. We identified 665 variants with allelic effects on gene regulation and 29 variants that regulate the gene expression response to caffeine (GxE, FDR<10%). When overlapping our GxE results with eQTLs colocalized with CAD and hypertension, we dissected their regulatory mechanisms and showed a modulatory role for caffeine. Our results demonstrate that massively parallel reporter assay is a powerful approach to identify and molecularly characterize GxE in the specific context of caffeine consumption.

Data availability

FASTQ files and read count data are available at the GEO accession number GSE221514

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Carly Boye

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cynthia A Kalita

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony S Findley

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9922-3076
  4. Adnan Alazizi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julong Wei

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoquan Wen

    Department of Biostatistics, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Roger Pique-Regi

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1262-2275
  8. Francesca Luca

    Center for Molecular Medicine and Genetics, Wayne State University, Detroit, United States
    For correspondence
    fluca@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8252-9052

Funding

National Institute of General Medical Sciences (R01GM109215)

  • Roger Pique-Regi
  • Francesca Luca

National Institute of Environmental Health Sciences (R01ES033634)

  • Xiaoquan Wen
  • Roger Pique-Regi
  • Francesca Luca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen CJ Parker, University of Michigan, United States

Version history

  1. Preprint posted: November 24, 2022 (view preprint)
  2. Received: November 30, 2022
  3. Accepted: February 8, 2024
  4. Accepted Manuscript published: February 9, 2024 (version 1)
  5. Version of Record published: February 28, 2024 (version 2)

Copyright

© 2024, Boye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 324
    views
  • 52
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carly Boye
  2. Cynthia A Kalita
  3. Anthony S Findley
  4. Adnan Alazizi
  5. Julong Wei
  6. Xiaoquan Wen
  7. Roger Pique-Regi
  8. Francesca Luca
(2024)
Characterization of caffeine response regulatory variants in vascular endothelial cells
eLife 13:e85235.
https://doi.org/10.7554/eLife.85235

Share this article

https://doi.org/10.7554/eLife.85235

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.

    1. Genetics and Genomics
    Mohammad Alfatah, Jolyn Jia Jia Lim ... Frank Eisenhaber
    Research Article

    Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1–MItochondria–TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.