Age-related differences in prefrontal glutamate are associated with increased working memory decay that gives the appearance of learning deficits

  1. Milena Rmus  Is a corresponding author
  2. Mingjian He
  3. Beth Baribault
  4. Edward G Walsh
  5. Elena K Festa
  6. Anne GE Collins
  7. Matthew R Nassar
  1. University of California, Berkeley, United States
  2. Massachusetts Institute of Technology, United States
  3. Brown University, United States

Abstract

The ability to use past experience to effectively guide decision making declines in older adulthood. Such declines have been theorized to emerge from either impairments of striatal reinforcement learning systems (RL) or impairments of recurrent networks in prefrontal and parietal cortex that support working memory (WM). Distinguishing between these hypotheses has been challenging because either RL or WM could be used to facilitate successful decision making in typical laboratory tasks. Here we investigated the neurocomputational correlates of age-related decision making deficits using an RL-WMtask to disentangle these mechanisms, a computational model to quantify them, and magnetic resonance spectroscopy to link them to their molecular bases. Our results reveal that task performance is worse in older age, in a manner best explained by working memory deficits, as might be expected if cortical recurrent networks were unable to sustain persistent activity across multiple trials. Consistent with this, we show that older adults had lower levels of prefrontal glutamate, the excitatory neurotransmitter thought to support persistent activity, compared to younger adults. Individuals with the lowest prefrontal glutamate levels displayed the greatest impairments in working memory after controlling for other anatomical and metabolic factors. Together, our results suggest that lower levels of prefrontal glutamate may contribute to failures of working memory systems and impaired decision making in older adulthood.

Data availability

All data and code has been made available on OSF (available here: https://osf.io/2u7pm/?view_only=04046e75466645f884ba72a6b4c0e5e9).

The following data sets were generated

Article and author information

Author details

  1. Milena Rmus

    University of California, Berkeley, Berkeley, United States
    For correspondence
    milena_rmus@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2044-048X
  2. Mingjian He

    Massachusetts Institute of Technology, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6688-8693
  3. Beth Baribault

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Edward G Walsh

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elena K Festa

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3700-4270
  6. Anne GE Collins

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3751-3662
  7. Matthew R Nassar

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Aging (R00AG054732)

  • Matthew R Nassar

National Institute on Aging (K99AG054732)

  • Matthew R Nassar

National Science Foundation (NSF2020844)

  • Anne GE Collins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claire M Gillan, Trinity College Dublin, Ireland

Ethics

Human subjects: All participants provided a written informed consent prior to beginning the experiment. All procedures were approved by the Brown University Institutional Review Board under protocol 0812992595 (behavioral session) and 1203000583 (MRS session).

Version history

  1. Preprint posted: November 29, 2022 (view preprint)
  2. Received: November 29, 2022
  3. Accepted: April 17, 2023
  4. Accepted Manuscript published: April 18, 2023 (version 1)
  5. Version of Record published: May 11, 2023 (version 2)

Copyright

© 2023, Rmus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,020
    views
  • 186
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Milena Rmus
  2. Mingjian He
  3. Beth Baribault
  4. Edward G Walsh
  5. Elena K Festa
  6. Anne GE Collins
  7. Matthew R Nassar
(2023)
Age-related differences in prefrontal glutamate are associated with increased working memory decay that gives the appearance of learning deficits
eLife 12:e85243.
https://doi.org/10.7554/eLife.85243

Share this article

https://doi.org/10.7554/eLife.85243

Further reading

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.

    1. Neuroscience
    Emilio Salinas, Bashirul I Sheikh
    Insight

    Our ability to recall details from a remembered image depends on a single mechanism that is engaged from the very moment the image disappears from view.