Age-related differences in prefrontal glutamate are associated with increased working memory decay that gives the appearance of learning deficits

  1. Milena Rmus  Is a corresponding author
  2. Mingjian He
  3. Beth Baribault
  4. Edward G Walsh
  5. Elena K Festa
  6. Anne GE Collins
  7. Matthew R Nassar
  1. University of California, Berkeley, United States
  2. Massachusetts Institute of Technology, United States
  3. Brown University, United States

Abstract

The ability to use past experience to effectively guide decision making declines in older adulthood. Such declines have been theorized to emerge from either impairments of striatal reinforcement learning systems (RL) or impairments of recurrent networks in prefrontal and parietal cortex that support working memory (WM). Distinguishing between these hypotheses has been challenging because either RL or WM could be used to facilitate successful decision making in typical laboratory tasks. Here we investigated the neurocomputational correlates of age-related decision making deficits using an RL-WMtask to disentangle these mechanisms, a computational model to quantify them, and magnetic resonance spectroscopy to link them to their molecular bases. Our results reveal that task performance is worse in older age, in a manner best explained by working memory deficits, as might be expected if cortical recurrent networks were unable to sustain persistent activity across multiple trials. Consistent with this, we show that older adults had lower levels of prefrontal glutamate, the excitatory neurotransmitter thought to support persistent activity, compared to younger adults. Individuals with the lowest prefrontal glutamate levels displayed the greatest impairments in working memory after controlling for other anatomical and metabolic factors. Together, our results suggest that lower levels of prefrontal glutamate may contribute to failures of working memory systems and impaired decision making in older adulthood.

Data availability

All data and code has been made available on OSF (available here: https://osf.io/2u7pm/?view_only=04046e75466645f884ba72a6b4c0e5e9).

The following data sets were generated

Article and author information

Author details

  1. Milena Rmus

    University of California, Berkeley, Berkeley, United States
    For correspondence
    milena_rmus@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2044-048X
  2. Mingjian He

    Massachusetts Institute of Technology, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6688-8693
  3. Beth Baribault

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Edward G Walsh

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elena K Festa

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3700-4270
  6. Anne GE Collins

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3751-3662
  7. Matthew R Nassar

    Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Aging (R00AG054732)

  • Matthew R Nassar

National Institute on Aging (K99AG054732)

  • Matthew R Nassar

National Science Foundation (NSF2020844)

  • Anne GE Collins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided a written informed consent prior to beginning the experiment. All procedures were approved by the Brown University Institutional Review Board under protocol 0812992595 (behavioral session) and 1203000583 (MRS session).

Copyright

© 2023, Rmus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,381
    views
  • 226
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Milena Rmus
  2. Mingjian He
  3. Beth Baribault
  4. Edward G Walsh
  5. Elena K Festa
  6. Anne GE Collins
  7. Matthew R Nassar
(2023)
Age-related differences in prefrontal glutamate are associated with increased working memory decay that gives the appearance of learning deficits
eLife 12:e85243.
https://doi.org/10.7554/eLife.85243

Share this article

https://doi.org/10.7554/eLife.85243

Further reading

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.

    1. Neuroscience
    Hans Auer, Donna Gift Cabalo ... Jessica Royer
    Research Article

    The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in microstructure and function. The current study characterized subregional structure-function coupling in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the generalizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free conditions, and revealed a close association of structural axes with macroscale functional network embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel multiscale approach consolidates descriptions of amygdala anatomy and function obtained from histological and in vivo imaging techniques.