Decoupled neoantigen cross-presentation by dendritic cells limits anti-tumor immunity against tumors with heterogeneous neoantigen expression

Abstract

Cancer immunotherapies, in particular checkpoint blockade immunotherapy (CBT), can induce control of cancer growth, with a fraction of patients experiencing durable responses. However, the majority of patients currently do not respond to CBT and the molecular determinants of resistance have not been fully elucidated. Mounting clinical evidence suggests that the clonal status of neoantigens (NeoAg) impacts the anti-tumor T cell response. High intratumor heterogeneity (ITH), where the majority of NeoAgs are expressed subclonally, is correlated with poor clinical response to CBT and poor infiltration with tumor-reactive T cells. However, the mechanism by which ITH blunts tumor-reactive T cells is unclear. We developed a transplantable murine lung cancer model to characterize the immune response against a defined set of NeoAgs expressed either clonally or subclonally to model low or high ITH, respectively. Here we show that clonal expression of a weakly immunogenic NeoAg with a relatively strong NeoAg increased the immunogenicity of tumors with low but not high ITH. Mechanistically we determined that clonal NeoAg expression allowed cross-presenting dendritic cells to acquire and present both NeoAgs. Dual NeoAg presentation by dendritic cells was associated with a more mature DC phenotype and a higher stimulatory capacity. These data suggest that clonal NeoAg expression can induce more potent anti-tumor responses due to more stimulatory dendritic cell : T cell interactions. Therapeutic vaccination targeting subclonally expressed NeoAgs could be used to boost anti-tumor T cell responses.

Data availability

All raw data are uploaded as source data files.

Article and author information

Author details

  1. Kim Bich Nguyen

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2269-6809
  2. Malte Roerden

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Christopher J Copeland

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6882-3359
  4. Coralie M Backlund

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Nory G Klop-Packel

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Tanaka Remba

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. Byungji Kim

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8131-5255
  8. Nishant K Singh

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Michael E Birnbaum

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    Michael E Birnbaum, is an equity holder in 3T Biosciences, and is a co-founder, equity holder, and consultant of Kelonia Therapeutics and Abata Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2281-3518
  10. Darrell J Irvine

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Stefani Spranger

    Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    spranger@mit.edu
    Competing interests
    Stefani Spranger, is a SAB member for Related Sciences,Arcus Biosciences, Ankyra Therapeutics and Venn Therapeutics. S.S. is a co-founder ofDanger Bio. S.S. is a consultant for TAKEDA, Merck, Tango Therapeutics, Dragonfly andRibon Therapeutics and receives funding for unrelated projects from Leap Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3257-4546

Funding

Melanoma Research Alliance

  • Stefani Spranger

Lung Cancer Research Foundation

  • Stefani Spranger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental animal procedures were approved by the Committee on Animal Care (CAC/IACUC) at MIT.

Copyright

© 2023, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,999
    views
  • 299
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kim Bich Nguyen
  2. Malte Roerden
  3. Christopher J Copeland
  4. Coralie M Backlund
  5. Nory G Klop-Packel
  6. Tanaka Remba
  7. Byungji Kim
  8. Nishant K Singh
  9. Michael E Birnbaum
  10. Darrell J Irvine
  11. Stefani Spranger
(2023)
Decoupled neoantigen cross-presentation by dendritic cells limits anti-tumor immunity against tumors with heterogeneous neoantigen expression
eLife 12:e85263.
https://doi.org/10.7554/eLife.85263

Share this article

https://doi.org/10.7554/eLife.85263

Further reading

    1. Cancer Biology
    2. Cell Biology
    Xiangning Bu, Nathanael Ashby ... Inhee Chung
    Research Article

    Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.

    1. Cancer Biology
    2. Cell Biology
    Rui Hua, Jean X Jiang
    Insight

    Cell crowding causes high-grade breast cancer cells to become more invasive by activating a molecular switch that causes the cells to shrink and spread.