Defects in lipid homeostasis reflect the function of TANGO2 in phospholipid and neutral lipid metabolism

  1. Agustin Leonardo Lujan
  2. Ombretta Foresti
  3. Conor Sugden
  4. Nathalie Brouwers
  5. Alex Mateo Farre
  6. Alessio Vignoli
  7. Mahshid Azamian
  8. Alicia Turner
  9. Jose Wojnacki
  10. Vivek Malhotra  Is a corresponding author
  1. Barcelona Institute for Science and Technology, Spain
  2. Baylor College of Medicine, United States

Abstract

We show that TANGO2 in mammalian cells localizes predominantly to mitochondria and partially at mitochondria sites juxtaposed to lipid droplets (LDs) and the endoplasmic reticulum. HepG2 cells and fibroblasts of patients lacking TANGO2 exhibit enlarged LDs. Quantitative lipidomics revealed a marked increase in lysophosphatidic acid (LPA) and a concomitant decrease in its biosynthetic precursor phosphatidic acid (PA). These changes were exacerbated in nutrient-starved cells. Based on our data, we suggest that TANGO2 function is linked to acyl-CoA metabolism, which is necessary for the acylation of LPA to generate PA. The defect in acyl-CoA availability impacts the metabolism of many other fatty acids, generates high levels of reactive oxygen (ROS), and promotes lipid peroxidation. We suggest that the increased size of LDs is a combination of enrichment in peroxidized lipids and a defect in their catabolism. Our findings help explain the physiological consequence of mutations in TANGO2 that induce acute metabolic crises, including rhabdomyolysis, cardiomyopathy, and cardiac arrhythmias, often leading to fatality upon starvation and stress.

Data availability

"TANGO2 - Source data files" (https://doi.org/10.5061/dryad.rn8pk0pg5) to Dryad.

The following data sets were generated
    1. Lujan AL
    (2023) TANGO2 - Source data files
    Dryad Digital Repository, doi:10.5061/dryad.rn8pk0pg5.

Article and author information

Author details

  1. Agustin Leonardo Lujan

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4906-6951
  2. Ombretta Foresti

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6878-0395
  3. Conor Sugden

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Nathalie Brouwers

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9808-9394
  5. Alex Mateo Farre

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  6. Alessio Vignoli

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7131-2915
  7. Mahshid Azamian

    Center for Cell and Gene Therapy, Baylor College of Medicine, Texas, United States
    Competing interests
    No competing interests declared.
  8. Alicia Turner

    Department of Molecular and Human Genetics, Baylor College of Medicine, Texas, United States
    Competing interests
    No competing interests declared.
  9. Jose Wojnacki

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  10. Vivek Malhotra

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    Vivek Malhotra, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-7943

Funding

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España (PID2019-105518GB-I00)

  • Agustin Leonardo Lujan

European Research Council (ERC-2020-SyG-Proposal No. 951146)

  • Agustin Leonardo Lujan
  • Ombretta Foresti
  • Conor Sugden
  • Nathalie Brouwers
  • Alex Mateo Farre
  • Alessio Vignoli
  • Jose Wojnacki
  • Vivek Malhotra

European Molecular Biology Organization (EMBO ALTF 659-2021)

  • Agustin Leonardo Lujan

European Research Council (H2020-MSCA-IF-2019-894115)

  • Jose Wojnacki

Ministerio de Ciencia e Innovación (RYC-2016-20919)

  • Ombretta Foresti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Lujan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,319
    views
  • 283
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agustin Leonardo Lujan
  2. Ombretta Foresti
  3. Conor Sugden
  4. Nathalie Brouwers
  5. Alex Mateo Farre
  6. Alessio Vignoli
  7. Mahshid Azamian
  8. Alicia Turner
  9. Jose Wojnacki
  10. Vivek Malhotra
(2023)
Defects in lipid homeostasis reflect the function of TANGO2 in phospholipid and neutral lipid metabolism
eLife 12:e85345.
https://doi.org/10.7554/eLife.85345

Share this article

https://doi.org/10.7554/eLife.85345

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.