Defects in lipid homeostasis reflect the function of TANGO2 in phospholipid and neutral lipid metabolism

  1. Agustin Leonardo Lujan
  2. Ombretta Foresti
  3. Conor Sugden
  4. Nathalie Brouwers
  5. Alex Mateo Farre
  6. Alessio Vignoli
  7. Mahshid Azamian
  8. Alicia Turner
  9. Jose Wojnacki
  10. Vivek Malhotra  Is a corresponding author
  1. Barcelona Institute for Science and Technology, Spain
  2. Baylor College of Medicine, United States

Abstract

We show that TANGO2 in mammalian cells localizes predominantly to mitochondria and partially at mitochondria sites juxtaposed to lipid droplets (LDs) and the endoplasmic reticulum. HepG2 cells and fibroblasts of patients lacking TANGO2 exhibit enlarged LDs. Quantitative lipidomics revealed a marked increase in lysophosphatidic acid (LPA) and a concomitant decrease in its biosynthetic precursor phosphatidic acid (PA). These changes were exacerbated in nutrient-starved cells. Based on our data, we suggest that TANGO2 function is linked to acyl-CoA metabolism, which is necessary for the acylation of LPA to generate PA. The defect in acyl-CoA availability impacts the metabolism of many other fatty acids, generates high levels of reactive oxygen (ROS), and promotes lipid peroxidation. We suggest that the increased size of LDs is a combination of enrichment in peroxidized lipids and a defect in their catabolism. Our findings help explain the physiological consequence of mutations in TANGO2 that induce acute metabolic crises, including rhabdomyolysis, cardiomyopathy, and cardiac arrhythmias, often leading to fatality upon starvation and stress.

Data availability

"TANGO2 - Source data files" (https://doi.org/10.5061/dryad.rn8pk0pg5) to Dryad.

The following data sets were generated
    1. Lujan AL
    (2023) TANGO2 - Source data files
    Dryad Digital Repository, doi:10.5061/dryad.rn8pk0pg5.

Article and author information

Author details

  1. Agustin Leonardo Lujan

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4906-6951
  2. Ombretta Foresti

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6878-0395
  3. Conor Sugden

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Nathalie Brouwers

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9808-9394
  5. Alex Mateo Farre

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  6. Alessio Vignoli

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7131-2915
  7. Mahshid Azamian

    Center for Cell and Gene Therapy, Baylor College of Medicine, Texas, United States
    Competing interests
    No competing interests declared.
  8. Alicia Turner

    Department of Molecular and Human Genetics, Baylor College of Medicine, Texas, United States
    Competing interests
    No competing interests declared.
  9. Jose Wojnacki

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  10. Vivek Malhotra

    Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    Vivek Malhotra, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-7943

Funding

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España (PID2019-105518GB-I00)

  • Agustin Leonardo Lujan

European Research Council (ERC-2020-SyG-Proposal No. 951146)

  • Agustin Leonardo Lujan
  • Ombretta Foresti
  • Conor Sugden
  • Nathalie Brouwers
  • Alex Mateo Farre
  • Alessio Vignoli
  • Jose Wojnacki
  • Vivek Malhotra

European Molecular Biology Organization (EMBO ALTF 659-2021)

  • Agustin Leonardo Lujan

European Research Council (H2020-MSCA-IF-2019-894115)

  • Jose Wojnacki

Ministerio de Ciencia e Innovación (RYC-2016-20919)

  • Ombretta Foresti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University, United States

Version history

  1. Preprint posted: November 5, 2022 (view preprint)
  2. Received: December 3, 2022
  3. Accepted: March 22, 2023
  4. Accepted Manuscript published: March 24, 2023 (version 1)
  5. Version of Record published: March 27, 2023 (version 2)

Copyright

© 2023, Lujan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,175
    views
  • 262
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agustin Leonardo Lujan
  2. Ombretta Foresti
  3. Conor Sugden
  4. Nathalie Brouwers
  5. Alex Mateo Farre
  6. Alessio Vignoli
  7. Mahshid Azamian
  8. Alicia Turner
  9. Jose Wojnacki
  10. Vivek Malhotra
(2023)
Defects in lipid homeostasis reflect the function of TANGO2 in phospholipid and neutral lipid metabolism
eLife 12:e85345.
https://doi.org/10.7554/eLife.85345

Share this article

https://doi.org/10.7554/eLife.85345

Further reading

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.