Large-scale neural dynamics in a shared low-dimensionalstate space reflect cognitive and attentional dynamics

  1. Hayoung Song  Is a corresponding author
  2. Won Mok Shim  Is a corresponding author
  3. Monica D Rosenberg  Is a corresponding author
  1. University of Chicago, United States
  2. Sungkyunkwan University, Republic of Korea

Abstract

Cognition and attention arise from the adaptive coordination of neural systems in response to external and internal demands. The low-dimensional latent subspace that underlies large-scale neural dynamics and the relationships of these dynamics to cognitive and attentional states, however, are unknown. We conducted functional magnetic resonance imaging as human participants performed attention tasks, watched comedy sitcom episodes and an educational documentary, and rested. Whole-brain dynamics traversed a common set of latent states that spanned canonical gradients of functional brain organization, with global desynchronization among functional networks modulating state transitions. Neural state dynamics were synchronized across people during engaging movie watching and aligned to narrative event structures. Neural state dynamics reflected attention fluctuations such that different states indicated engaged attention in task and naturalistic contexts whereas a common state indicated attention lapses in both contexts. Together, these results demonstrate that traversals along large-scale gradients of human brain organization reflect cognitive and attentional dynamics.

Data availability

Raw fMRI data from the SitcOm, Nature documentary, Gradual-onset continuous performance task (SONG) dataset are available on OpenNeuro;https://openneuro.org/datasets/ds004592/versions/1.0.1. Behavioral data, processed fMRI output, and main analysis scripts are published on Github; https://github.com/hyssong/neuraldynamics

The following data sets were generated
    1. Song H
    2. Shim WM
    3. Rosenberg MD
    (2023) SONG dataset
    https://doi.org/10.18112/openneuro.ds004592.v1.0.1.
The following previously published data sets were used

Article and author information

Author details

  1. Hayoung Song

    Department of Psychology, University of Chicago, Chicago, United States
    For correspondence
    hyssong@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5970-8076
  2. Won Mok Shim

    Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
    For correspondence
    wonmokshim@skku.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Monica D Rosenberg

    Department of Psychology, University of Chicago, Chicago, United States
    For correspondence
    mdrosenberg@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6179-4025

Funding

Institute for Basic Science (R015-D1)

  • Won Mok Shim

National Research Foundation of Korea (NRF-2019M3E5D2A01060299)

  • Won Mok Shim

National Research Foundation of Korea (NRF-2019R1A2C1085566)

  • Won Mok Shim

National Science Foundation (BCS-2043740)

  • Monica D Rosenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent and consent to publish were obtained from the participants prior to the experiments, and the possible consequences of the study were explained. The study was approved by the Institutional Review Board of Sungkyunkwan University.

Copyright

© 2023, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,806
    views
  • 478
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hayoung Song
  2. Won Mok Shim
  3. Monica D Rosenberg
(2023)
Large-scale neural dynamics in a shared low-dimensionalstate space reflect cognitive and attentional dynamics
eLife 12:e85487.
https://doi.org/10.7554/eLife.85487

Share this article

https://doi.org/10.7554/eLife.85487

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.