Large-scale neural dynamics in a shared low-dimensionalstate space reflect cognitive and attentional dynamics
Abstract
Cognition and attention arise from the adaptive coordination of neural systems in response to external and internal demands. The low-dimensional latent subspace that underlies large-scale neural dynamics and the relationships of these dynamics to cognitive and attentional states, however, are unknown. We conducted functional magnetic resonance imaging as human participants performed attention tasks, watched comedy sitcom episodes and an educational documentary, and rested. Whole-brain dynamics traversed a common set of latent states that spanned canonical gradients of functional brain organization, with global desynchronization among functional networks modulating state transitions. Neural state dynamics were synchronized across people during engaging movie watching and aligned to narrative event structures. Neural state dynamics reflected attention fluctuations such that different states indicated engaged attention in task and naturalistic contexts whereas a common state indicated attention lapses in both contexts. Together, these results demonstrate that traversals along large-scale gradients of human brain organization reflect cognitive and attentional dynamics.
Data availability
Raw fMRI data from the SitcOm, Nature documentary, Gradual-onset continuous performance task (SONG) dataset are available on OpenNeuro;https://openneuro.org/datasets/ds004592/versions/1.0.1. Behavioral data, processed fMRI output, and main analysis scripts are published on Github; https://github.com/hyssong/neuraldynamics
-
SONG datasethttps://doi.org/10.18112/openneuro.ds004592.v1.0.1.
Article and author information
Author details
Funding
Institute for Basic Science (R015-D1)
- Won Mok Shim
National Research Foundation of Korea (NRF-2019M3E5D2A01060299)
- Won Mok Shim
National Research Foundation of Korea (NRF-2019R1A2C1085566)
- Won Mok Shim
National Science Foundation (BCS-2043740)
- Monica D Rosenberg
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent and consent to publish were obtained from the participants prior to the experiments, and the possible consequences of the study were explained. The study was approved by the Institutional Review Board of Sungkyunkwan University.
Copyright
© 2023, Song et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,806
- views
-
- 478
- downloads
-
- 21
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.
-
- Neuroscience
Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.