RANK+TLR2+ myeloid subpopulation converts autoimmune to joint destruction in rheumatoid arthritis

  1. Weixin Zhang
  2. Kathleen Noller
  3. Janet Crane
  4. Mei Wan
  5. Xiaojun Wu
  6. Patrick Cahan  Is a corresponding author
  7. Xu Cao  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Johns Hopkins Medical Institutions, United States

Abstract

Joint destruction is the major clinic burden in patients with rheumatoid arthritis (RA). It is unclear, though, how this autoimmune disease progresses to the point of deterioration of the joint. Here, we report that in a mouse model of RA the upregulation of TLR2 expression and its a(2,3) sialylation in RANK+ myeloid monocytes mediate the transition from autoimmunity to osteoclast fusion and bone resorption, resulting in joint destruction. The expression of a(2,3) sialyltransferases were significantly increased in RANK+TLR2+ myeloid monocytes, and their inhibition or treatment with a TLR2 inhibitor blocked osteoclast fusion. Notably, analysis of our single-cell RNA-sequencing (scRNA-seq) libraries generated from RA mice revealed a novel RANK+TLR2- subset that negatively regulated osteoclast fusion. Importantly, the RANK+TLR2+ subset was significantly diminished with the treatments, whereas the RANK+TLR2- subset was expanded. Moreover, the RANK+TLR2- subset could differentiate into a TRAP+ osteoclast lineage, but the resulting cells did not fuse to form osteoclasts. Our scRNA-seq data showed that Maf is highly expressed in the RANK+TLR2- subset, and the a(2,3) sialyltransferase inhibitor induced Maf expression in the RANK+TLR2+ subset. The identification of a RANK+TLR2- subset provides a potential explanation for TRAP+ mononuclear cells in bone and their anabolic activity. Further, TLR2 expression and its a(2,3) sialylation in the RANK+ myeloid monocytes could be effective targets to prevent autoimmune-mediated joint destruction.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE221704

The following data sets were generated

Article and author information

Author details

  1. Weixin Zhang

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Kathleen Noller

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Janet Crane

    Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Mei Wan

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    Competing interests
    Mei Wan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-540X
  5. Xiaojun Wu

    Department of Pathology, Johns Hopkins Medical Institutions, Washington, United States
    Competing interests
    No competing interests declared.
  6. Patrick Cahan

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
    For correspondence
    patrick.cahan@jhmi.edu
    Competing interests
    No competing interests declared.
  7. Xu Cao

    Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, United States
    For correspondence
    xcao11@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8614-6059

Funding

National Institute on Aging (R01 AG076783)

  • Xu Cao

National Institute on Aging (R01 AG068997)

  • Xu Cao

National Institute on Aging (P01 AG066603)

  • Xu Cao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Di Chen, Chinese Academy of Sciences, China

Ethics

Animal experimentation: All animals were kept in the Animal Facility of the Johns Hopkins University School of Medicine. The animal protocol was approved by the Institutional Animal Care and Use Committee of Johns Hopkins University, Baltimore, MD, USA (MO21M276).

Version history

  1. Received: December 13, 2022
  2. Accepted: May 18, 2023
  3. Accepted Manuscript published: May 19, 2023 (version 1)
  4. Version of Record published: June 27, 2023 (version 2)
  5. Version of Record updated: July 11, 2023 (version 3)

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 801
    views
  • 164
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weixin Zhang
  2. Kathleen Noller
  3. Janet Crane
  4. Mei Wan
  5. Xiaojun Wu
  6. Patrick Cahan
  7. Xu Cao
(2023)
RANK+TLR2+ myeloid subpopulation converts autoimmune to joint destruction in rheumatoid arthritis
eLife 12:e85553.
https://doi.org/10.7554/eLife.85553

Share this article

https://doi.org/10.7554/eLife.85553

Further reading

    1. Medicine
    Peigen Chen, Haicheng Chen ... Xing Yang
    Research Article

    Caesarean section scar diverticulum (CSD) is a significant cause of infertility among women who have previously had a Caesarean section, primarily due to persistent inflammatory exudation associated with this condition. Even though abnormal bacterial composition is identified as a critical factor leading to this chronic inflammation, clinical data suggest that a long-term cure is often unattainable with antibiotic treatment alone. In our study, we employed metagenomic analysis and mass spectrometry techniques to investigate the fungal composition in CSD and its interaction with bacteria. We discovered that local fungal abnormalities in CSD can disrupt the stability of the bacterial population and the entire microbial community by altering bacterial abundance via specific metabolites. For instance, Lachnellula suecica reduces the abundance of several Lactobacillus spp., such as Lactobacillus jensenii, by diminishing the production of metabolites like Goyaglycoside A and Janthitrem E. Concurrently, Clavispora lusitaniae and Ophiocordyceps australis can synergistically impact the abundance of Lactobacillus spp. by modulating metabolite abundance. Our findings underscore that abnormal fungal composition and activity are key drivers of local bacterial dysbiosis in CSD.

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.