Inhibition of DNMT1 methyltransferase activity via glucose-regulated O-GlcNAcylation alters the epigenome

Abstract

The DNA methyltransferase activity of DNMT1 is vital for genomic maintenance of DNA methylation. We report here that DNMT1 function is regulated by O-GlcNAcylation, a protein modification that is sensitive to glucose levels, and that elevated O-GlcNAcylation of DNMT1 from high glucose environment leads to alterations to the epigenome. Using mass spectrometry and complementary alanine mutation experiments, we identified S878 as the major residue that is O-GlcNAcylated on human DNMT1. Functional studies in human and mouse cells further revealed that O-GlcNAcylation of DNMT1-S878 results in an inhibition of methyltransferase activity, resulting in a general loss of DNA methylation that preferentially occurs at partially methylated domains (PMDs). This loss of methylation corresponds with an increase in DNA damage and apoptosis. These results establish O-GlcNAcylation of DNMT1 as a mechanism through which the epigenome is regulated by glucose metabolism and implicates a role for glycosylation of DNMT1 in metabolic diseases characterized by hyperglycemia.

Data availability

PromethION sequencing data have been deposited in the NCBI Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA) under accession no. GSE201470. Mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD043031.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Heon Shin

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5480-8492
  2. Amy Leung

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin R Costello

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Parijat Senapati

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7324-1230
  5. Hiroyuki Kato

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roger E Moore

    Integrated Mass Spectrometry Shared Resource, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Lee

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dimitri Lin

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaofang Tang

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Patrick Pirrotte

    Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Zhen Bouman Chen

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3291-1090
  12. Dustin E Schones

    Department of Diabetes Complications and Metabolism, City of Hope, Duarte, United States
    For correspondence
    dschones@coh.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7692-8583

Funding

National Institutes of Health (R01DK112041)

  • Dustin E Schones

National Institutes of Health (R01CA220693)

  • Dustin E Schones

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carlos Isales, Augusta University, United States

Ethics

Animal experimentation: All animal experiments conducted have been approved by the Institutional Animal Care and Use Committees at City of Hope. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#17010).

Version history

  1. Preprint posted: May 11, 2022 (view preprint)
  2. Received: December 15, 2022
  3. Accepted: July 19, 2023
  4. Accepted Manuscript published: July 20, 2023 (version 1)
  5. Version of Record published: July 31, 2023 (version 2)

Copyright

© 2023, Shin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,410
    views
  • 246
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Heon Shin
  2. Amy Leung
  3. Kevin R Costello
  4. Parijat Senapati
  5. Hiroyuki Kato
  6. Roger E Moore
  7. Michael Lee
  8. Dimitri Lin
  9. Xiaofang Tang
  10. Patrick Pirrotte
  11. Zhen Bouman Chen
  12. Dustin E Schones
(2023)
Inhibition of DNMT1 methyltransferase activity via glucose-regulated O-GlcNAcylation alters the epigenome
eLife 12:e85595.
https://doi.org/10.7554/eLife.85595

Share this article

https://doi.org/10.7554/eLife.85595

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.