Multiple NTS neuron populations cumulatively suppress food intake

  1. Weiwei Qui
  2. Chelsea R Hutch
  3. Yi Wang
  4. Jennifer Wloszek
  5. Rachel A Rucker
  6. Martin G Myers Jr  Is a corresponding author
  7. Darleen Sandoval  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. University of Colorado Anschutz Medical Campus, United States

Abstract

Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.

Data availability

All data generated are included in the manuscript and supplemental figures

Article and author information

Author details

  1. Weiwei Qui

    Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Chelsea R Hutch

    Department of Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Yi Wang

    Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Jennifer Wloszek

    Department of Molecular and Integrative Physiology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4914-8877
  5. Rachel A Rucker

    Neuroscience Graduate Program, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1434-9401
  6. Martin G Myers Jr

    Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    mgmyers@umich.edu
    Competing interests
    Martin G Myers, receives research support from AstraZeneca and Novo Nordisk..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9468-2046
  7. Darleen Sandoval

    Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    darleen.sandoval@cuanschutz.edu
    Competing interests
    Darleen Sandoval, is a consultant for Metis Therapeutics. The author declares that they have no other conflicts of interest.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3669-3278

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (P01 DK117821)

  • Martin G Myers Jr

National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK020572)

  • Martin G Myers Jr

National Institute of Diabetes and Digestive and Kidney Diseases (P01 DK117821)

  • Darleen Sandoval

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yunlei Yang, Albert Einstein College of Medicine, United States

Ethics

Animal experimentation: Mice were bred in our colony in the Unit for Laboratory Animal Medicine at the University of Michigan; these mice and the procedures performed were approved by the University of Michigan Committee on the Use and Care of Animals (Protocol#00011066) and in accordance with Association for the Assessment and Approval of Laboratory Animal Care and National Institutes of Health guidelines. Mice were provided with food and water ad libitum (except as noted below) in temperature-controlled rooms on a 12-hour light-dark cycle. For all studies, animals were processed in the order of their ear tag number, which was randomly assigned at the time of tailing (before genotyping). ARRIVE guidelines were followed; animals were group-housed except for feeding and CTA studies. All surgery was performed under isoflurane anesthesia and every effort was made to minimize suffering.

Version history

  1. Received: December 16, 2022
  2. Preprint posted: December 23, 2022 (view preprint)
  3. Accepted: December 5, 2023
  4. Accepted Manuscript published: December 7, 2023 (version 1)
  5. Accepted Manuscript updated: December 18, 2023 (version 2)
  6. Version of Record published: January 10, 2024 (version 3)

Copyright

© 2023, Qui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 936
    views
  • 197
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weiwei Qui
  2. Chelsea R Hutch
  3. Yi Wang
  4. Jennifer Wloszek
  5. Rachel A Rucker
  6. Martin G Myers Jr
  7. Darleen Sandoval
(2023)
Multiple NTS neuron populations cumulatively suppress food intake
eLife 12:e85640.
https://doi.org/10.7554/eLife.85640

Share this article

https://doi.org/10.7554/eLife.85640

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.