Multiple NTS neuron populations cumulatively suppress food intake

  1. Weiwei Qiu
  2. Chelsea R Hutch
  3. Yi Wang
  4. Jennifer Wloszek
  5. Rachel A Rucker
  6. Martin G Myers Jr  Is a corresponding author
  7. Darleen Sandoval  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. University of Colorado Anschutz Medical Campus, United States

Abstract

Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.

Data availability

All data generated are included in the manuscript and supplemental figures

Article and author information

Author details

  1. Weiwei Qiu

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Chelsea R Hutch

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Yi Wang

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Jennifer Wloszek

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4914-8877
  5. Rachel A Rucker

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1434-9401
  6. Martin G Myers Jr

    University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    mgmyers@umich.edu
    Competing interests
    Martin G Myers, receives research support from AstraZeneca and Novo Nordisk..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9468-2046
  7. Darleen Sandoval

    Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    darleen.sandoval@cuanschutz.edu
    Competing interests
    Darleen Sandoval, is a consultant for Metis Therapeutics. The author declares that they have no other conflicts of interest.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3669-3278

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (P01 DK117821)

  • Martin G Myers Jr

National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK020572)

  • Martin G Myers Jr

National Institute of Diabetes and Digestive and Kidney Diseases (P01 DK117821)

  • Darleen Sandoval

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were bred in our colony in the Unit for Laboratory Animal Medicine at the University of Michigan; these mice and the procedures performed were approved by the University of Michigan Committee on the Use and Care of Animals (Protocol#00011066) and in accordance with Association for the Assessment and Approval of Laboratory Animal Care and National Institutes of Health guidelines. Mice were provided with food and water ad libitum (except as noted below) in temperature-controlled rooms on a 12-hour light-dark cycle. For all studies, animals were processed in the order of their ear tag number, which was randomly assigned at the time of tailing (before genotyping). ARRIVE guidelines were followed; animals were group-housed except for feeding and CTA studies. All surgery was performed under isoflurane anesthesia and every effort was made to minimize suffering.

Copyright

© 2023, Qiu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,492
    views
  • 260
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weiwei Qiu
  2. Chelsea R Hutch
  3. Yi Wang
  4. Jennifer Wloszek
  5. Rachel A Rucker
  6. Martin G Myers Jr
  7. Darleen Sandoval
(2023)
Multiple NTS neuron populations cumulatively suppress food intake
eLife 12:e85640.
https://doi.org/10.7554/eLife.85640

Share this article

https://doi.org/10.7554/eLife.85640

Further reading

    1. Neuroscience
    Lotfi Ferhat, Rabia Soussi ... Michel Khrestchatisky
    Research Article

    Preclinical and clinical studies show that mild to moderate hypothermia is neuroprotective in sudden cardiac arrest, ischemic stroke, perinatal hypoxia/ischemia, traumatic brain injury, and seizures. Induction of hypothermia largely involves physical cooling therapies, which induce several clinical complications, while some molecules have shown to be efficient in pharmacologically induced hypothermia (PIH). Neurotensin (NT), a 13 amino acid neuropeptide that regulates body temperature, interacts with various receptors to mediate its peripheral and central effects. NT induces PIH when administered intracerebrally. However, these effects are not observed if NT is administered peripherally, due to its rapid degradation and poor passage of the blood-brain barrier (BBB). We conjugated NT to peptides that bind the low-density lipoprotein receptor (LDLR) to generate ‘vectorized’ forms of NT with enhanced BBB permeability. We evaluated their effects in epileptic conditions following peripheral administration. One of these conjugates, VH-N412, displayed improved stability, binding potential to both the LDLR and NTSR-1, rodent/human cross-reactivity and improved brain distribution. In a mouse model of kainate (KA)-induced status epilepticus (SE), VH-N412 elicited rapid hypothermia associated with anticonvulsant effects, potent neuroprotection, and reduced hippocampal inflammation. VH-N412 also reduced sprouting of the dentate gyrus mossy fibers and preserved learning and memory skills in the treated mice. In cultured hippocampal neurons, VH-N412 displayed temperature-independent neuroprotective properties. To the best of our knowledge, this is the first report describing the successful treatment of SE with PIH. In all, our results show that vectorized NT may elicit different neuroprotection mechanisms mediated by hypothermia and/or by intrinsic neuroprotective properties.

    1. Neuroscience
    Pál Barzó, Ildikó Szöts ... Gábor Tamás
    Research Article

    The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 y of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition, and age-related neurodegenerative diseases.