Multiple NTS neuron populations cumulatively suppress food intake

  1. Weiwei Qiu
  2. Chelsea R Hutch
  3. Yi Wang
  4. Jennifer Wloszek
  5. Rachel A Rucker
  6. Martin G Myers Jr  Is a corresponding author
  7. Darleen Sandoval  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. University of Colorado Anschutz Medical Campus, United States

Abstract

Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.

Data availability

All data generated are included in the manuscript and supplemental figures

Article and author information

Author details

  1. Weiwei Qiu

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Chelsea R Hutch

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Yi Wang

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Jennifer Wloszek

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4914-8877
  5. Rachel A Rucker

    University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1434-9401
  6. Martin G Myers Jr

    University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    mgmyers@umich.edu
    Competing interests
    Martin G Myers, receives research support from AstraZeneca and Novo Nordisk..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9468-2046
  7. Darleen Sandoval

    Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    darleen.sandoval@cuanschutz.edu
    Competing interests
    Darleen Sandoval, is a consultant for Metis Therapeutics. The author declares that they have no other conflicts of interest.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3669-3278

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (P01 DK117821)

  • Martin G Myers Jr

National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK020572)

  • Martin G Myers Jr

National Institute of Diabetes and Digestive and Kidney Diseases (P01 DK117821)

  • Darleen Sandoval

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were bred in our colony in the Unit for Laboratory Animal Medicine at the University of Michigan; these mice and the procedures performed were approved by the University of Michigan Committee on the Use and Care of Animals (Protocol#00011066) and in accordance with Association for the Assessment and Approval of Laboratory Animal Care and National Institutes of Health guidelines. Mice were provided with food and water ad libitum (except as noted below) in temperature-controlled rooms on a 12-hour light-dark cycle. For all studies, animals were processed in the order of their ear tag number, which was randomly assigned at the time of tailing (before genotyping). ARRIVE guidelines were followed; animals were group-housed except for feeding and CTA studies. All surgery was performed under isoflurane anesthesia and every effort was made to minimize suffering.

Copyright

© 2023, Qiu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,405
    views
  • 254
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weiwei Qiu
  2. Chelsea R Hutch
  3. Yi Wang
  4. Jennifer Wloszek
  5. Rachel A Rucker
  6. Martin G Myers Jr
  7. Darleen Sandoval
(2023)
Multiple NTS neuron populations cumulatively suppress food intake
eLife 12:e85640.
https://doi.org/10.7554/eLife.85640

Share this article

https://doi.org/10.7554/eLife.85640

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.