FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation of hnRNPA2B1

  1. Dongyang Wang
  2. Xiaojing Zheng
  3. Lihong Chai
  4. Junli Zhao
  5. Jiuling Zhu
  6. Yanqing Li
  7. Peiyan Yang
  8. Qinwen Mao  Is a corresponding author
  9. Haibin Xia  Is a corresponding author
  1. Shaanxi Normal University, China
  2. University of Utah, United States

Abstract

FAM76B has been reported to be a nuclear speckle localized protein with unknown function. In this study, FAM76B was first demonstrated to inhibit the NF-κB-mediated inflammatory pathway by affecting the translocation of hnRNPA2B1 in vitro. We further showed that FAM76B suppressed inflammation in vivo using a traumatic brain injury (TBI) mouse model. Lastly, FAM76B was shown to interact with hnRNPA2B1 in human tissues taken from patients with acute, organizing, and chronic TBI, and with different neurodegenerative diseases. The results suggested that FAM76B mediated neuroinflammation via influencing the translocation of hnRNPA2B1in vivo during TBI repair and neurodegenerative diseases. In summary, we for the first time demonstrated the role of FAM76B in regulating inflammation and further showed that FAM76B could regulate the NF-κB-mediated inflammatory pathway by affecting hnRNPA2B1 translocation, which provides new information for studying the mechanism of inflammation regulation.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository [1] with the dataset identifier PXD037539. ([1] Ma J, et al. (2019) iProX: an integrated proteome resource. Nucleic Acids Res, 47, D1211-D1217).

Article and author information

Author details

  1. Dongyang Wang

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaojing Zheng

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lihong Chai

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Junli Zhao

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiuling Zhu

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yanqing Li

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Peiyan Yang

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Qinwen Mao

    Department of Pathology, University of Utah, Salt Lake, United States
    For correspondence
    Qinwen.Mao@path.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Haibin Xia

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    For correspondence
    hbxia2001@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2038-5759

Funding

The national natrual science foundation of China (81773265)

  • Haibin Xia

Key Research and Development Plan of Shaanxi Province (2018SF-106)

  • Haibin Xia

the natrual science foundation of Shaanxi Province (2023-JC-YB-642)

  • Xiaojing Zheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brandon K Harvey, NIDA/NIH, United States

Ethics

Animal experimentation: All animal studies were performed in accordance with institutional guidelines and with approval by the Institutional Animal Care and Use Committee of Shaanxi Normal University (SNNU 2019-0128). Ethical permit of the use of the samples of human brain autopsy specimens was granted by the ethics committee of Shaanxi Normal University (SNNU 2019-0026).

Version history

  1. Received: December 19, 2022
  2. Preprint posted: December 30, 2022 (view preprint)
  3. Accepted: August 9, 2023
  4. Accepted Manuscript published: August 10, 2023 (version 1)
  5. Version of Record published: August 23, 2023 (version 2)

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 410
    views
  • 79
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dongyang Wang
  2. Xiaojing Zheng
  3. Lihong Chai
  4. Junli Zhao
  5. Jiuling Zhu
  6. Yanqing Li
  7. Peiyan Yang
  8. Qinwen Mao
  9. Haibin Xia
(2023)
FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation of hnRNPA2B1
eLife 12:e85659.
https://doi.org/10.7554/eLife.85659

Share this article

https://doi.org/10.7554/eLife.85659

Further reading

    1. Cell Biology
    Yi-Ju Chen, Shun-Cheng Tseng ... Eric Hwang
    Research Article

    A functional nervous system is built upon the proper morphogenesis of neurons to establish the intricate connection between them. The microtubule cytoskeleton is known to play various essential roles in this morphogenetic process. While many microtubule-associated proteins (MAPs) have been demonstrated to participate in neuronal morphogenesis, the function of many more remains to be determined. This study focuses on a MAP called HMMR in mice, which was originally identified as a hyaluronan binding protein and later found to possess microtubule and centrosome binding capacity. HMMR exhibits high abundance on neuronal microtubules and altering the level of HMMR significantly affects the morphology of neurons. Instead of confining to the centrosome(s) like cells in mitosis, HMMR localizes to microtubules along axons and dendrites. Furthermore, transiently expressing HMMR enhances the stability of neuronal microtubules and increases the formation frequency of growing microtubules along the neurites. HMMR regulates the microtubule localization of a non-centrosomal microtubule nucleator TPX2 along the neurite, offering an explanation for how HMMR contributes to the promotion of growing microtubules. This study sheds light on how cells utilize proteins involved in mitosis for non-mitotic functions.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jiabin Pan, Rui Zhou ... Xiang-dong Li
    Research Article

    Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.