FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation of hnRNPA2B1

  1. Dongyang Wang
  2. Xiaojing Zheng
  3. Lihong Chai
  4. Junli Zhao
  5. Jiuling Zhu
  6. Yanqing Li
  7. Peiyan Yang
  8. Qinwen Mao  Is a corresponding author
  9. Haibin Xia  Is a corresponding author
  1. Shaanxi Normal University, China
  2. University of Utah, United States

Abstract

FAM76B has been reported to be a nuclear speckle localized protein with unknown function. In this study, FAM76B was first demonstrated to inhibit the NF-κB-mediated inflammatory pathway by affecting the translocation of hnRNPA2B1 in vitro. We further showed that FAM76B suppressed inflammation in vivo using a traumatic brain injury (TBI) mouse model. Lastly, FAM76B was shown to interact with hnRNPA2B1 in human tissues taken from patients with acute, organizing, and chronic TBI, and with different neurodegenerative diseases. The results suggested that FAM76B mediated neuroinflammation via influencing the translocation of hnRNPA2B1in vivo during TBI repair and neurodegenerative diseases. In summary, we for the first time demonstrated the role of FAM76B in regulating inflammation and further showed that FAM76B could regulate the NF-κB-mediated inflammatory pathway by affecting hnRNPA2B1 translocation, which provides new information for studying the mechanism of inflammation regulation.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository [1] with the dataset identifier PXD037539. ([1] Ma J, et al. (2019) iProX: an integrated proteome resource. Nucleic Acids Res, 47, D1211-D1217).

Article and author information

Author details

  1. Dongyang Wang

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaojing Zheng

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lihong Chai

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Junli Zhao

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiuling Zhu

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yanqing Li

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Peiyan Yang

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Qinwen Mao

    Department of Pathology, University of Utah, Salt Lake, United States
    For correspondence
    Qinwen.Mao@path.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Haibin Xia

    Department of Biochemistry, Shaanxi Normal University, Xi'an, China
    For correspondence
    hbxia2001@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2038-5759

Funding

The national natrual science foundation of China (81773265)

  • Haibin Xia

Key Research and Development Plan of Shaanxi Province (2018SF-106)

  • Haibin Xia

the natrual science foundation of Shaanxi Province (2023-JC-YB-642)

  • Xiaojing Zheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were performed in accordance with institutional guidelines and with approval by the Institutional Animal Care and Use Committee of Shaanxi Normal University (SNNU 2019-0128). Ethical permit of the use of the samples of human brain autopsy specimens was granted by the ethics committee of Shaanxi Normal University (SNNU 2019-0026).

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 549
    views
  • 98
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dongyang Wang
  2. Xiaojing Zheng
  3. Lihong Chai
  4. Junli Zhao
  5. Jiuling Zhu
  6. Yanqing Li
  7. Peiyan Yang
  8. Qinwen Mao
  9. Haibin Xia
(2023)
FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation of hnRNPA2B1
eLife 12:e85659.
https://doi.org/10.7554/eLife.85659

Share this article

https://doi.org/10.7554/eLife.85659

Further reading

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.