Electronic data review, client reminders, and expanded clinic hours for improving cervical cancer screening rates after COVID-19 pandemic shutdowns: a multi-component quality improvement program
Abstract
Objective:
To improve cervical cancer screening (CCS) rates, the East Boston Neighborhood Health Center (EBNHC) implemented a Quality Improvement (QI) initiative from March to August 2021.
Methods:
Staff training was provided. A 21-provider team validated overdue CCS indicated by electronic medical record data. To improve screening, CCS-only sessions were created during regular clinic hours (n=5) and weekends/evenings (n=8). Patients were surveyed on their experience.
Results:
6126 charts were reviewed. Of the list of overdue patients, outreach was performed to 1375 patients to schedule the 13 sessions. A total of 459 (33%) of patients completed screening, 622 (45%) could not be reached, and 203 (15%) canceled or missed appointments. The proportion of total active patients who were up to date with CCS increased from 68% in March to 73% in August 2021. Survey results indicated high patient satisfaction, and only 42% of patients would have scheduled CCS without outreach.
Conclusions:
The creation of a validated patient chart list and extra clinical sessions devoted entirely to CCS improved up-to-date CCS rates. However, high rates of unsuccessful outreach and cancelations limited sustainability. This information can be used by other community health centers to optimize clinical workflows for CCS.
Funding:
All funding was internal from EBNHC Adult Medicine, Family Medicine, and Women's Health Departments.
Data availability
Source data for figures attached to submission
Article and author information
Author details
Funding
No external funding
Ethics
Human subjects: Reporting of aggregate data and operational details from this quality improvement project was approved by the East Boston Neighborhood Health Center Chief Medical and Chief Quality Officers.
Copyright
© 2023, Ghosh et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 258
- views
-
- 34
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Medicine
Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.
-
- Medicine
- Microbiology and Infectious Disease
Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297–1203) days post-onset of viremia (DPOV) and 24 at 1 (1–3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.