Glial-dependent clustering of voltage-gated ion channels in Drosophila precedes myelin formation

  1. Simone Rey
  2. Henrike Ohm
  3. Frederieke Moschref
  4. Dagmar Zeuschner
  5. Marit Praetz
  6. Christian Klämbt  Is a corresponding author
  1. University of Münster, Germany
  2. Max-Planck Institut für Multidisziplinäre Naturwissenschaften, Germany
  3. Max Planck Institute for Molecular Biomedicine, Germany

Abstract

Neuronal information conductance often involves the transmission of action potentials. The spreading of action potentials along the axonal process of a neuron is based on three physical parameters: The axial resistance of the axon, the axonal insulation by glial membranes, and the positioning of voltage-gated ion channels. In vertebrates, myelin and channel clustering allow fast saltatory conductance. Here we show that in Drosophila melanogaster voltage-gated sodium and potassium channels, Para and Shal, co-localize and cluster in an area resembling the axon initial segment. The local enrichment of Para but not of Shal localization depends on the presence of peripheral wrapping glial cells. In larvae, relatively low levels of Para channels are needed to allow proper signal transduction and nerves are simply wrapped by glial cells. In adults, the concentration of Para increases and is prominently found at the axon initial segment of motor neurons. Concomitantly, these axon domains are covered by a mesh of glial processes forming a lacunar structure that possibly serves as an ion reservoir. Directly flanking this domain glial processes forming the lacunar area appear to collapse and closely apposed stacks of glial cell processes can be detected, resembling a myelin-like insulation. Thus, Drosophila development may reflect the evolution of myelin which forms in response to increased levels of clustered voltage-gated ion channels.

Data availability

All imaging and source data are available through: https://omero-imaging.uni-muenster.de/openlink/rn_12EIW4OO3WCT_2607_ReyOhm_Elife_2023/ (To be replaced by a DOI upon final acceptance). All Drosophila strains reported are available upon request to C.K..

The following data sets were generated

Article and author information

Author details

  1. Simone Rey

    University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0130-6744
  2. Henrike Ohm

    University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Frederieke Moschref

    Max-Planck Institut für Multidisziplinäre Naturwissenschaften, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dagmar Zeuschner

    Max Planck Institute for Molecular Biomedicine, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6712-0192
  5. Marit Praetz

    University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Christian Klämbt

    University of Münster, Münster, Germany
    For correspondence
    klaembt@uni-muenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6349-5800

Funding

DFG (SFB 1348 B5)

  • Christian Klämbt

DFG (Kl 588 / 29)

  • Christian Klämbt

Open access funding provided by Max Planck Society.The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dion K Dickman, University of Southern California, United States

Version history

  1. Received: December 22, 2022
  2. Preprint posted: January 9, 2023 (view preprint)
  3. Accepted: May 22, 2023
  4. Accepted Manuscript published: June 6, 2023 (version 1)
  5. Version of Record published: June 22, 2023 (version 2)

Copyright

© 2023, Rey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,517
    views
  • 208
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simone Rey
  2. Henrike Ohm
  3. Frederieke Moschref
  4. Dagmar Zeuschner
  5. Marit Praetz
  6. Christian Klämbt
(2023)
Glial-dependent clustering of voltage-gated ion channels in Drosophila precedes myelin formation
eLife 12:e85752.
https://doi.org/10.7554/eLife.85752

Share this article

https://doi.org/10.7554/eLife.85752

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.