Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for Drosophila research

  1. Nikki Coleman-Gosser
  2. Yanhui Hu
  3. Shiva Raghuvanshi
  4. Shane Stitzinger
  5. Weihang Chen
  6. Arthur Luhur
  7. Daniel Mariyappa
  8. Molly Josifov
  9. Andrew Zelhof
  10. Stephanie E Mohr
  11. Norbert Perrimon  Is a corresponding author
  12. Amanda Simcox  Is a corresponding author
  1. The Ohio State University, United States
  2. Harvard Medical School, United States
  3. Indiana University, United States
  4. Harvard Medical School, Howard Hughes Medical Institute, United States

Abstract

Expression of activated Ras, RasV12, provides Drosophila cultured cells with a proliferation and survival advantage that simplifies the generation of continuous cell lines. Here we used lineage restricted RasV12 expression to generate continuous cell lines of muscle, glial, and epithelial cell type. Additionally, cell lines with neuronal and hemocyte characteristics were isolated by cloning from cell cultures established with broad RasV12 expression. Differentiation with the hormone ecdysone caused maturation of cells from mesoderm lines into active muscle tissue and enhanced dendritic features in neuronal-like lines. Transcriptome analysis showed expression of key cell-type specific genes and the expected alignment with single cell sequencing and in situ data. Overall, the technique has produced in vitro cell models with characteristics of glia, epithelium, muscle, nerve, and hemocyte. The cells and associated data are available from the Drosophila Genomic Resource Center.

Data availability

Sequencing data have been deposited in GEO under accession code GSE219105.

The following data sets were generated

Article and author information

Author details

  1. Nikki Coleman-Gosser

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yanhui Hu

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiva Raghuvanshi

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shane Stitzinger

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Weihang Chen

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Arthur Luhur

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Mariyappa

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4775-1656
  8. Molly Josifov

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2899-7186
  9. Andrew Zelhof

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephanie E Mohr

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9639-7708
  11. Norbert Perrimon

    Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
    For correspondence
    perrimon@genetics.med.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7542-472X
  12. Amanda Simcox

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    For correspondence
    simcox.1@osu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5572-7042

Funding

National Institutes of Health Office of the Director (R24 OD019847)

  • Stephanie E Mohr
  • Norbert Perrimon
  • Amanda Simcox

National Institutes of Health (P40OD010949)

  • Andrew Zelhof

National Institutes of Health (P41 GM132087)

  • Andrew Zelhof

National Science Foundation (IOS 1419535)

  • Amanda Simcox

Howard Hughes Medical Institute

  • Norbert Perrimon

Women & Philanthropy at the Ohio State University (Grant)

  • Amanda Simcox

National Science Foundation (Support while serving at the National Science Foundation)

  • Amanda Simcox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,309
    views
  • 381
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikki Coleman-Gosser
  2. Yanhui Hu
  3. Shiva Raghuvanshi
  4. Shane Stitzinger
  5. Weihang Chen
  6. Arthur Luhur
  7. Daniel Mariyappa
  8. Molly Josifov
  9. Andrew Zelhof
  10. Stephanie E Mohr
  11. Norbert Perrimon
  12. Amanda Simcox
(2023)
Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for Drosophila research
eLife 12:e85814.
https://doi.org/10.7554/eLife.85814

Share this article

https://doi.org/10.7554/eLife.85814

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.