Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for Drosophila research
Abstract
Expression of activated Ras, RasV12, provides Drosophila cultured cells with a proliferation and survival advantage that simplifies the generation of continuous cell lines. Here we used lineage restricted RasV12 expression to generate continuous cell lines of muscle, glial, and epithelial cell type. Additionally, cell lines with neuronal and hemocyte characteristics were isolated by cloning from cell cultures established with broad RasV12 expression. Differentiation with the hormone ecdysone caused maturation of cells from mesoderm lines into active muscle tissue and enhanced dendritic features in neuronal-like lines. Transcriptome analysis showed expression of key cell-type specific genes and the expected alignment with single cell sequencing and in situ data. Overall, the technique has produced in vitro cell models with characteristics of glia, epithelium, muscle, nerve, and hemocyte. The cells and associated data are available from the Drosophila Genomic Resource Center.
Data availability
Sequencing data have been deposited in GEO under accession code GSE219105.
-
Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for Drosophila researchNCBI Gene Expression Omnibus, GSE219105.
Article and author information
Author details
Funding
National Institutes of Health Office of the Director (R24 OD019847)
- Stephanie E Mohr
- Norbert Perrimon
- Amanda Simcox
National Institutes of Health (P40OD010949)
- Andrew Zelhof
National Institutes of Health (P41 GM132087)
- Andrew Zelhof
National Science Foundation (IOS 1419535)
- Amanda Simcox
Howard Hughes Medical Institute
- Norbert Perrimon
Women & Philanthropy at the Ohio State University (Grant)
- Amanda Simcox
National Science Foundation (Support while serving at the National Science Foundation)
- Amanda Simcox
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 2,540
- views
-
- 397
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 3
- citations for umbrella DOI https://doi.org/10.7554/eLife.85814