Abstract

Src is a protein tyrosine kinase commonly activated downstream of transmembrane receptors and plays key roles in cell growth, migration and survival signaling pathways. In conventional dendritic cells (cDCs), Src is involved in the activation of the non-enzymatic functions of indoleamine 2,3-dioxygenase 1 (IDO1), an immunoregulatory molecule endowed with both catalytic activity and signal transducing properties. Prompted by the discovery that the metabolite spermidine confers a tolerogenic phenotype on cDCs that is dependent on both the expression of IDO1 and the activity of Src kinase, we here investigated the spermidine mode of action. We found that spermidine directly binds Src in a previously unknown allosteric site located on the backside of the SH2 domain and thus acts as a positive allosteric modulator of the enzyme. Besides confirming that Src phosphorylates IDO1, here we showed that spermidine promotes the protein-protein interaction of Src with IDO1. Overall, this study may pave the way toward the design of allosteric modulators able to switch on/off the Src-mediated pathways, including those involving the immunoregulatory protein IDO1.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file.Figure 1 - Source Data 1; Figure 1 - Source Data 2; Figure 1 - Figure supplement 1 - Source Data 3; Figure 2 - Source Data 4; Figure 2 - Figure supplement 1 - Source Data 5; Figure 2 - Figure supplement 2 - Source Data 6; Figure 3 - Source Data 7; Figure 3 - Source Data 8; Figure 3 - Source Data 9; Figure 3 - Source Data 10; Figure 3 - Source Data 11; Figure 3 - Figure supplement 1 - Source Data 12: contain the original blots used to generate the figures.

Article and author information

Author details

  1. Sofia Rossini

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Marco Gagaro

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Giulia Scalisi

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Elisa Bianconi

    Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4597-8056
  5. Sara Ambrosino

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Eleonora Panfili

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudia Volpi

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Ciriana Orabona

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Antonio Macchiarulo

    Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Francesca Fallarino

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Giada Mondanelli

    Department of Medicine and Surgery, University of Perugia, Perugia, Italy
    For correspondence
    giada.mondanelli@unipg.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0798-0465

Funding

Università degli Studi di Perugia (Ricerca di base 2019)

  • Giada Mondanelli

Associazione italiana per la ricerca sul cancro (AIRC 2019-23084)

  • Claudia Volpi

Italian Ministry of Education, University, and Research (PRIN 2020L45ZW)

  • Ciriana Orabona

Università degli Studi di Perugia (Ricerca di base 2020)

  • Antonio Macchiarulo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Rossini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 838
    views

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sofia Rossini
  2. Marco Gagaro
  3. Giulia Scalisi
  4. Elisa Bianconi
  5. Sara Ambrosino
  6. Eleonora Panfili
  7. Claudia Volpi
  8. Ciriana Orabona
  9. Antonio Macchiarulo
  10. Francesca Fallarino
  11. Giada Mondanelli
(2023)
A back-door insights into the modulation of Src kinase activity by the polyamine spermidine
eLife 12:e85872.
https://doi.org/10.7554/eLife.85872

Share this article

https://doi.org/10.7554/eLife.85872

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.